Full Text:   <2558>

CLC number: 

On-line Access: 2021-01-27

Received: 2020-09-14

Revision Accepted: 2020-10-21

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2835

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.1 P.44-59

http://doi.org/10.1007/s42242-020-00098-0


3D printing of PEEK–cHAp scaffold for medical bone implant


Author(s):  Bankole I. Oladapo, S. Abolfazl Zahedi, Sikiru O. Ismail, Francis T. Omigbodun, Oluwole K. Bowoto, Mattew A. Olawumi, Musa A. Muhammad

Affiliation(s):  School of Engineering and Sustainable Development, De Montfort University, Leicester, UK; more

Corresponding email(s):   Bankole.Oladapo@dmu.ac.uk, bioladapo@abuad.edu.ng

Key Words:  3D printing, PEEK–cHAp biocomposite, Nanostructure, Bone implant, Composite morphing


Share this article to: More

Bankole I. Oladapo, S. Abolfazl Zahedi, Sikiru O. Ismail, Francis T. Omigbodun, Oluwole K. Bowoto, Mattew A. Olawumi, Musa A. Muhammad . 3D printing of PEEK–cHAp scaffold for medical bone implant[J]. Journal of Zhejiang University Science D, 2021, 4(1): 44-59.

@article{title="3D printing of PEEK–cHAp scaffold for medical bone implant",
author="Bankole I. Oladapo, S. Abolfazl Zahedi, Sikiru O. Ismail, Francis T. Omigbodun, Oluwole K. Bowoto, Mattew A. Olawumi, Musa A. Muhammad ",
journal="Journal of Zhejiang University Science D",
volume="4",
number="1",
pages="44-59",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-020-00098-0"
}

%0 Journal Article
%T 3D printing of PEEK–cHAp scaffold for medical bone implant
%A Bankole I. Oladapo
%A S. Abolfazl Zahedi
%A Sikiru O. Ismail
%A Francis T. Omigbodun
%A Oluwole K. Bowoto
%A Mattew A. Olawumi
%A Musa A. Muhammad
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 1
%P 44-59
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-020-00098-0

TY - JOUR
T1 - 3D printing of PEEK–cHAp scaffold for medical bone implant
A1 - Bankole I. Oladapo
A1 - S. Abolfazl Zahedi
A1 - Sikiru O. Ismail
A1 - Francis T. Omigbodun
A1 - Oluwole K. Bowoto
A1 - Mattew A. Olawumi
A1 - Musa A. Muhammad
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 1
SP - 44
EP - 59
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-020-00098-0


Abstract: 
The major drawback associated with PEEK implants is their biologically inert surface, which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bone growth. In this study, polyetheretherketone (PEEK) was incorporated with calcium hydroxyapatite (cHAp) to fabricate a PEEK–cHAp biocomposite, using the fused deposition modeling (FDM) method and a surface treatment strategy to create microporous architectures onto the filaments of PEEK lattice scaffold. Also, nanostructure and morphological tests of the PEEK–cHAp biocomposite were modeled and analyzed on the FDM-printed PEEK–cHAp biocomposite sample to evaluate its mechanical and thermal strengths as well as in vitro cytotoxicity via a scanning electron microscope (SEM). A technique was used innovatively to create and investigate the porous nanostructure of the PEEK with controlled pore size and distribution to promote cell penetration and biological integration of the PEEK–cHAp into the tissue. In vivo tests demonstrated that the surface-treated micropores facilitated the adhesion of newly regenerated soft tissues to form tight implant–tissue interfacial bonding between the cHAp and PEEK. The results of the cell culture depicted that PEEK–cHAp exhibited better cell proliferation attachment spreading and higher alkaline phosphatase activity than PEEK alone. Apatite islands formed on the PEEK–cHAp composite after immersion in simulated body fluid of Dulbecco's modified Eagle medium (DMEM) for 14 days and grew continuously with more or extended periods. The microstructure treatment of the crystallinity of PEEK was comparatively and significantly different from the PEEK–cHAp sample, indicating a better treatment of PEEK–cHAp. The in vitro results obtained from the PEEK–cHAp biocomposite material showed its biodegradability and performance suitability for bone implants. This study has potential applications in the field of biomedical engineering to strengthen the conceptual knowledge of FDM and medical implants fabricated from PEEK–cHAp biocomposite materials.

英国德蒙福特大学Oladapo等 | 用于医用骨植入物的PEEK–cHAp支架的3D打印

本研究论文聚焦PEEK复合材料在成骨修复方面的应用。PEEK材料植入物的主要缺点是其表面呈生物惰性,这将导致不理想的细胞反应且植入物与周围软组织之间粘附不良,从而阻碍骨骼正常生长。在本研究中,聚醚醚酮(PEEK)与羟基磷灰石钙(cHAp)结合形成PEEK-cHAp生物复合材料,并使用熔融沉积成型(FDM)方法和表面处理策略在PEEK晶格支架的细丝上构建微孔结构。此外,在FDM打印的PEEK-cHAp生物复合材料样品上对其纳米结构和形态学测试进行了建模和分析,并通过扫描电子显微镜(SEM)评估其机械强度和热强度以及体外细胞毒性。研究中采用创新技术构建和研究了具有可控孔径和分布的PEEK的多孔纳米结构,以促进PEEK-cHAp的细胞渗透和生物组织整合性能。体内试验表明,经表面处理的微孔可促进新再生的软组织的粘附,从而在cHAp和PEEK之间形成紧密的植入物-组织界面结合。细胞培养的结果表明,与单独的PEEK相比,PEEK-cHAp表现出更好的细胞增殖附着扩散和更高的碱性磷酸酶活性。将PEEK-cHAp复合材料浸入细胞培养基(DMEM)的模拟体液中14天后,形成了磷灰石岛,并以更多或更长周期持续生长。在微结构处理方面,PEEK-cHAp样品的结晶度也优于传统PEEK,且具有显著差异。PEEK-cHAp生物复合材料的体外试验结果显示出其生物降解能力和性能适用于骨植入物应用。此研究在生物医学工程领域具有潜在的应用前景,可以强化FDM和由PEEK-cHAp生物复合材料制造的医用植入物的概念知识。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE