Full Text:   <3044>

Summary:  <2031>

CLC number: TN911

On-line Access: 2015-06-04

Received: 2014-07-24

Revision Accepted: 2014-09-25

Crosschecked: 2015-05-07

Cited: 2

Clicked: 7235

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Michaelraj Kingston Roberts

http://orcid.org/0000-0002-1484-703X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.6 P.511-518

http://doi.org/10.1631/FITEE.1400269


An improved low-complexity sum-product decoding algorithm for low-density parity-check codes


Author(s):  Michaelraj Kingston Roberts, Ramesh Jayabalan

Affiliation(s):  Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India

Corresponding email(s):   king.pane@gmail.com

Key Words:  Computational complexity, Coding gain, Fast Fourier transform (FFT), Low-density parity-check (LDPC) codes, Sum-product algorithm (SPA)


Share this article to: More <<< Previous Article|

Michaelraj Kingston Roberts, Ramesh Jayabalan. An improved low-complexity sum-product decoding algorithm for low-density parity-check codes[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(6): 511-518.

@article{title="An improved low-complexity sum-product decoding algorithm for low-density parity-check codes",
author="Michaelraj Kingston Roberts, Ramesh Jayabalan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="6",
pages="511-518",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1400269"
}

%0 Journal Article
%T An improved low-complexity sum-product decoding algorithm for low-density parity-check codes
%A Michaelraj Kingston Roberts
%A Ramesh Jayabalan
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 6
%P 511-518
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1400269

TY - JOUR
T1 - An improved low-complexity sum-product decoding algorithm for low-density parity-check codes
A1 - Michaelraj Kingston Roberts
A1 - Ramesh Jayabalan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 6
SP - 511
EP - 518
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1400269


Abstract: 
In this paper, an improved low-complexity sum-product decoding algorithm is presented for low-density parity-check (LDPC) codes. In the proposed algorithm, reduction in computational complexity is achieved by utilizing fast Fourier transform (FFT) with time shift in the check node process. The improvement in the decoding performance is achieved by utilizing an optimized integer constant in the variable node process. Simulation results show that the proposed algorithm achieves an overall coding gain improvement ranging from 0.04 to 0.46 dB. Moreover, when compared with the sum-product algorithm (SPA), the proposed decoding algorithm can achieve a reduction of 42%–67% of the total number of arithmetic operations required for the decoding process.

The authors have proposed an interesting modification to the LDPC decoding algorithm to reduce the implementation complexity. Overall the paper is well written and structured.

一种改进的用于低密度奇偶校验码的低复杂度和积译码

目的:为减少校验节点过程总计算量,对低密度奇偶校验译码提出低复杂度的和积译码算法。
创新点:降低和积译码计算复杂度的同时不损失译码性能。
方法:在校验节点过程中使用时移快速傅里叶变换降低计算复杂度;在变量节点过程中使用优化后的常整数提升译码性能。所提算法性能在Wi-MAX和WLAN中的标准低密度奇偶校验码上测试并验证,且与SPA、SSPA和MSPA进行性能比较(图1-3)。
结论:仿真结果表明,整体上所述算法对编码增益的提高值在0.04到0.46 dB之间;与和积算法(SPA)相比,所述算法可以降低译码过程所需42%-67%的全部代数运算操作。

关键词:计算复杂度;编码增益;快速傅里叶变换;低密度奇偶校验码;和积算法(SPA)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chandrasetty, V.A., Aziz, S.M., 2011. FPGA implementation of a LDPC decoder using a reduced complexity message passing algorithm. J. Netw., 6(1):36-45.

[2]Chung, S.Y., Forney, G.D., Richardson, T.J., et al., 2001. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett., 5(2):58-60.

[3]Fossorier, M.P.C., Mihaljevic, M., Imai, H., 1999. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans. Commun., 47(5):673-680.

[4]Gallager, R.G., 1962. Low-density parity-check codes. IRE Trans. Inform. Theory, 8(1):21-28.

[5]Goupil, A., Colas, M., Gelle, G., et al., 2007. FFT-based BP decoding of general LDPC codes over Abelian groups. IEEE Trans. Commun., 55(4):644-649.

[6]He, Y.C., Sun, S.H., Wang, X.M., 2002. Fast decoding of LDPC codes using quantisation. Electron. Lett., 38(4):189-190.

[7]IEEE, 2009. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2009.

[8]IEEE, 2015. IEEE Draft Standard for Information Technology—Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE P802.11-REVmc/D4.0.

[9]Jiang, X., Lee, M.H., Qi, J., 2012. Improved progressive edge-growth algorithm for fast encodable LDPC codes. EURASIP J. Wirel. Commun. Netw., 2012:178.1-178.10.

[10]Johnson, S.G., Frigo, M., 2007. A modified split-radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process., 55(1):111-119.

[11]Lee, M.H., Han, J.H., Sunwoo, M.H., 2008. New simplified sum-product algorithm for low complexity LDPC decoding. IEEE Workshop on Signal Processing Systems, p.61-66.

[12]MacKay, D.J.C., Neal, R.M., 1997. Near Shannon limit performance of low density parity check codes. Electron. Lett., 33(6):457-458.

[13]Morello, A., Mignone, V., 2006. DVB-S2: the second generation standard for satellite broad-band services. Proc. IEEE, 94(1):210-227.

[14]Papaharalabos, S., Sweeney, P., Evans, B.G., et al., 2007. Modified sum-product algorithm for decoding low-density parity-check codes. IET Commun., 1(3):294-300.

[15]Richardson, T.J., Urbanke, R.L., 2001. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory, 47(2):599-618.

[16]Safarnejad, L., Sadeghi, M.R., 2012. FFT based sum-product algorithm for decoding LDPC lattices. IEEE Commun. Lett., 16(9):1504-1507.

[17]Sorensen, H.V., Heideman, M., Burrus, C.S., 1986. On computing the split-radix FFT. IEEE Trans. Acoust. Speech Signal Process., 34(1):152-156.

[18]Yuan, L., Tian, X., Chen, Y., 2011. Pruning split-radix FFT with time shift. Proc. Int. Conf. on Electronics, Communications and Control, p.1581-1586.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Stylianos Papaharalabos@National Observatory of Athens, Greece<spapaha@noa.gr>

2015-06-10 15:11:25

Very interesting paper. It would be useful in future research works in this field. I am not aware thought, if this idea has been published already by the same or other authors in any of IEEE journals.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE