Full Text:   <1650>

Summary:  <412>

CLC number: TM921.41

On-line Access: 2015-11-04

Received: 2015-02-10

Revision Accepted: 2015-05-22

Crosschecked: 2015-10-10

Cited: 1

Clicked: 2167

Citations:  Bibtex RefMan EndNote GB/T7714


Qi-huai Chen


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.11 P.957-968


Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator

Author(s):  Qi-huai Chen, Qing-feng Wang, Tao Wang

Affiliation(s):  1State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   11025049@zju.edu.cn

Key Words:  Analysis, Design, Hybrid hydraulic excavator (HHE), Finite element method (FEM), Interior permanent-magnet (PM) motor, PM synchronous machine (PMSM)

Qi-huai Chen, Qing-feng Wang, Tao Wang. Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(11): 957-968.

@article{title="Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator",
author="Qi-huai Chen, Qing-feng Wang, Tao Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator
%A Qi-huai Chen
%A Qing-feng Wang
%A Tao Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 11
%P 957-968
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500056

T1 - Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator
A1 - Qi-huai Chen
A1 - Qing-feng Wang
A1 - Tao Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 11
SP - 957
EP - 968
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500056

A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the stator dimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabricated and tested on the experimental platform. The analytical design results are validated by measurements.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alberti, L., Barcaro, M., Pré, M.D., et al., 2010. IPM machine drive design and tests for an integrated starter-alternator application. IEEE Trans. Ind. Appl., 46(3):993-1001.

[2]Alberti, L., Bianchi, N., Bolognani, S., 2011. Variable-speed induction machine performance computed using finite-element. IEEE Trans. Ind. Appl., 47(2):789-797.

[3]Bianchi, N., Bolognani, S., Frare, P., 2006. Design criteria for high-efficiency SPM synchronous motors. IEEE Trans. Energy Conv., 21(2):396-404.

[4]Boglietti, A., Cavagnino, A., Lazzari, M., et al., 2003. Predicting iron losses in soft magnetic materials with arbitrary voltage supply: an engineering approach. IEEE Trans. Magn., 39(2):981-989.

[5]Cassimere, B.N., Sudhoff, S.D., Sudhoff, D.H., 2009. Analytical design model for surface-mounted permanent-magnet synchronous machines. IEEE Trans. Energy Conv., 24(2):347-357.

[6]Chan, C.C., 2002. The state of the art of electric and hybrid vehicles. Proc. IEEE, 90(2):247-275.

[7]Chau, K.T., Chan, C.C., Liu, C., 2008. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron., 55(6):2246-2257.

[8]Comanescu, M., Keyhani, A., Dai, M., 2003. Design and analysis of 42-V permanent-magnet generator for automotive applications. IEEE Trans. Energy Conv., 18(1):107-112.

[9]Dorrel, D.G., Knight, A.M., Popescu, M., 2011. Performance improvement in high-performance brushless rare-earth magnet motors for hybrid vehicles by use of high flux-density steel. IEEE Trans. Magn., 47(10):3016-3019.

[10]El-Refaie, A.M., 2010. Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges. IEEE Trans. Ind. Electron., 57(1):107-121.

[11]El-Refaie, A., Jahns, T.M., McCleer, P.J., et al., 2006. Experimental verification of optimal flux weakening in surface PM machines using concentrated windings. IEEE Trans. Ind. Appl., 42(2):443-453.

[12]Eriksson, S., Bernhoff, H., 2011. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power. Appl. Energy, 88(1):265-271.

[13]Kim, S., Park, S., Park, T., et al., 2014. Investigation and experimental verification of a novel spoke-type ferrite-magnet motor for electric-vehicle traction drive applications. IEEE Trans. Ind. Electron., 61(10):5763-5770.

[14]Laskaris, K.I., Kladas, A.G., 2010. Internal permanent magnet motor design for electric vehicle drive. IEEE Trans. Ind. Electron., 57(1):138-145.

[15]Markovic, M., Perriard, Y., 2009. Optimization design of a segmented Halbach permanent-magnet motor using an analytical model. IEEE Trans. Magn., 45(7):2955-2960.

[16]Morimoto, S., Ooi, S., Inoue, Y., et al., 2014. Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications. IEEE Trans. Ind. Electron., 61(10):5749-5756,

[17]Mutoh, N., 2012. Driving and braking torque distribution methods for front- and rear-wheel-independent drive-type electric vehicles on roads with low friction coefficient. IEEE Trans. Ind. Electron., 59(10):3919-3933.

[18]Nerg, J., Rilla, M., Ruuskanen, V., et al., 2014. Direct-driven interior magnet permanent-magnet synchronous motors for a full electric sports car. IEEE Trans. Ind. Electron., 61(8):4286-4294.

[19]Pellegrino, G., Vagati, A., Boazzo, B., et al., 2012a. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Trans. Ind. Appl., 48(6):2322-2332.

[20]Pellegrino, G., Vagati, A., Guglielmi, P., et al., 2012b. Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application. IEEE Trans. Ind. Electron., 59(2):803-811.

[21]Phi, H.N., Hoang, E., Gabsi, M., 2011. Performance synthesis of permanent-magnet synchronous machines during the driving cycle of a hybrid electric vehicle. IEEE Trans. Veh. Technol., 60(5):1991-1998.

[22]Reddy, P.B., El-Refaie, A.M., Huh, K.K., et al., 2012. Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications. IEEE Trans. Energy Conv., 27(3):593-602.

[23]Sizov, G.Y., Ionel, D.M., Demerdash, N.A.O., 2012. Modeling and parametric design of permanent-magnet AC machines using computationally efficient finite-element analysis. IEEE Trans. Ind. Electron., 59(6):2403-2413.

[24]Vaez-Zadeh, S., Ghasemi, A.R., 2005. Design optimization of permanent magnet synchronous motors for high torque capability and low magnet volume. Electr. Power Syst. Res., 74(2):307-313.

[25]Wang, A., Jia, Y., Soong, W.L., 2011. Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle. IEEE Trans. Magn., 47(10):3606-3609.

[26]Wang, D.Y., Guan, C., 2013. Optimal control for a parallel hybrid hydraulic excavator using particle swarm optimization. Sci. World J., 2013:831564.1-831564.6.

[27]Wang, T., Wang, Q.F., 2012. Optimization design of permanent magnet synchronous generator for a potential energy recovery system. IEEE Trans. Energy Conv., 27(4):856-863.

[28]Xiao, Q., Wang, Q.F., Zhang, Y.T., 2008. Control strategies of power system in hybrid hydraulic excavator. Autom. Constr., 17(4):361-367.

[29]Zhu, Z.Q., Howe, D., 2007. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc. IEEE, 95(4):746-765.

[30]Zhu, Z.Q., Wu, L.J., Xia, Z.P., 2010. An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines. IEEE Trans. Magn., 46(4):1100-1115.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE