Full Text:   <1337>

Summary:  <353>

CLC number: TP37

On-line Access: 2016-03-07

Received: 2015-08-06

Revision Accepted: 2016-02-16

Crosschecked: 2016-02-17

Cited: 0

Clicked: 1823

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chun-meng Kang

http://orcid.org/0000-0003-0156-058X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.3 P.185-199

http://doi.org/10.1631/FITEE.1500251


A survey of photon mapping state-of-the-art research and future challenges


Author(s):  Chun-meng Kang, Lu Wang, Yan-ning Xu, Xiang-xu Meng

Affiliation(s):  Department of Computer Science and Technology, Shandong University, Jinan 250101, China; more

Corresponding email(s):   kcm89kimi@163.com, luwang_hcivr@sdu.edu.cn, xyn@sdu.edu.cn, mxx@sdu.edu.cn

Key Words:  Global illumination, Photon mapping, Radiance estimation, Photon relaxation, Progressive photon mapping


Share this article to: More |Next Article >>>

Chun-meng Kang, Lu Wang, Yan-ning Xu, Xiang-xu Meng. A survey of photon mapping state-of-the-art research and future challenges[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(3): 185-199.

@article{title="A survey of photon mapping state-of-the-art research and future challenges",
author="Chun-meng Kang, Lu Wang, Yan-ning Xu, Xiang-xu Meng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="3",
pages="185-199",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500251"
}

%0 Journal Article
%T A survey of photon mapping state-of-the-art research and future challenges
%A Chun-meng Kang
%A Lu Wang
%A Yan-ning Xu
%A Xiang-xu Meng
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 3
%P 185-199
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500251

TY - JOUR
T1 - A survey of photon mapping state-of-the-art research and future challenges
A1 - Chun-meng Kang
A1 - Lu Wang
A1 - Yan-ning Xu
A1 - Xiang-xu Meng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 3
SP - 185
EP - 199
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500251


Abstract: 
global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.

真实感渲染中的光子映射技术:研究现状和未来挑战

目的:全局光照是照片级真实感渲染的核心部分。光子映射算法用于计算全局照明中的焦散色溢等效果都有其明显优势。通过调查光子映射方法的实现和优缺点,为研究人员全面介绍光子映射方法,并指出该领域未来可能的研究方向,激励进一步研究,以解决现有方法的局限性。
主要内容:回顾了近二十年的光子映射技术的相关研究,按照光子映射方法的架构,将光子映射方法的改进分类为光辉估计、光子松弛、光子追踪、渐近光子映射和并行的方法等几个方面。针对每一类光子映射的改进算法,分析了主流方法的实现原理和主要优缺点。同时提出了光子映射算法优化的三个挑战:平滑表面、特征细节和空间占用。图3是针对不同的改进类型的方法特点总结其在三个挑战方面的总体表现,表2是文章中介绍的主流方法的总结。最后,文章针对各类型的光子映射方法改进,分析了他们进一步的改进的研究方向。

关键词:全局光照;光子映射;光辉估计;光子追踪;光子松弛;渐近光子映射

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Belcour, L., Soler, C., 2011. Frequency based kernel estimation for progressive photon mapping. Proc. SIGGRAPH Asia, p.47:1.

[2]Benthin, C., Wald, I., Woop, S., et al., 2012. Combining single and packet-ray tracing for arbitrary ray distributions on the Intel MIC architecture. IEEE Trans. Visual. Comput. Graph., 18(9):1438-1448.

[3]Chen, J.T., Ge, X.Y., Wei, L.Y., et al., 2013. Bilateral blue noise sampling. ACM Trans. Graph., 32(6):216.1-216.11.

[4]Davidovič, T., Křivánek, J., Hašan, M., et al., 2014. Progressive light transport simulation on the GPU: survey and improvements. ACM Trans. Graph., 33(3):29.1-29.19.

[5]Dmitriev, K., Brabec, S., Myszkowski, K., et al., 2002. Interactive global illumination using selective photon tracing. Proc. 13th Eurographics Workshop on Rendering, 2002:100-113.

[6]Fabianowski, B., Dingliana, J., 2009. Interactive global photon mapping. Comput. Graph. Forum, 28(4):1151-1159.

[7]Fallahpour, M., Lin, M.B., Lin, C.H., 2014. Parallel photon-mapping rendering on a mesh-noc-based mpsoc platform. J. Parall. Distrib. Comput., 74(7):2626-2638.

[8]Fan, S., Chenney, S., Lai, Y., 2005. Metropolis photon sampling with optional user guidance. Proc. Eurographics Symp. on Rendering, p.127-138.

[9]Fradin, D., Meneveaux, D., Horna, S., 2005. Out-of-core photon-mapping for large buildings. Proc. Eurographics Symp. on Rendering, p.65-72.

[10]Frisvad, J.R., Schjøth, L., Erleben, K., et al., 2014. Photon differential splatting for rendering caustics. Comput. Graph. Forum, 33(6):252-263.

[11]Frolov, A.A., Kharlamov, V.A., Galaktionov, K.A., et al., 2014. Multiple reference octrees for a GPU photon mapping and irradiance caching. Program. Comput. Softw., 40(4):208-214.

[12]García, R., Ureña, C., Sbert, M., 2012. Description and solution of an unreported intrinsic bias in photon mapping density estimation with constant kernel. Comput. Graph. Forum, 31(1):33-41.

[13]García, R., Ureña, C., Poch, J., et al., 2014. Overestimation and underestimation biases in photon mapping with non-constant kernels. IEEE Trans. Visual. Comput. Graph., 20(10):1441-1450.

[14]Georgiev, I., Křivánek, J., Davidovič, T., et al., 2013. Light transport simulation with vertex connection and merging. Proc. 23rd Int. Conf. on Transport Theory, p.1-2.

[15]Günther, J., Grosch, T., 2014. Distributed out-of-core stochastic progressive photon mapping. Comput. Graph. Forum, 33(6):154-166.

[16]Günther, J., Wald, I., Slusallek, P., 2004. Realtime caustics using distributed photon mapping. Proc. Eurographics Symp. on Rendering Techniques, p.111-121.

[17]Hachisuka, T., Jensen, H.W., 2009. Stochastic progressive photon mapping. ACM Trans. Graph., 28(5):141.1-141.8.

[18]Hachisuka, T., Jensen, H.W., 2010. Parallel progressive photon mapping on GPUs. Proc. ACM SIGGRAPH Asia, p.54.1.

[19]Hachisuka, T., Jensen, H.W., 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5):114.1-114.11.

[20]Hachisuka, T., Ogaki, S., Jensen, H.W., 2008. Progressive photon mapping. ACM Trans. Graph., 27(5):130.1-130.8.

[21]Hachisuka, T., Jarosz, W., Jensen, H.W., 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph., 29(6):144.1-144.12.

[22]Hachisuka, T., Pantaleoni, J., Jensen, W.R., 2012. A path space extension for robust light transport simulation. ACM Trans. Graph., 31(6):191.1-191.10.

[23]Havran, V., Bittner, J., Herzog, R., et al., 2005. Ray maps for global illumination. Proc. 16th Eurographics Conf. on Rendering Techniques, p.43-54.

[24]Herzog, R., Havran, V., Kinuwaki, S., et al., 2007. Global illumination using photon ray splatting. Comput. Graph. Forum, 26(3):503-513.

[25]Igehy, H., 1999. Tracing ray differentials. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.179-186.

[26]Jensen, H.W., 1995. Importance driven path tracing using the photon map. Proc. Eurographics Workshop on Rendering Techniques, p.326-335.

[27]Jensen, H.W., 1996. Global illumination using photon maps. Proc. Eurographics Workshop on Rendering Techniques, p.21-30.

[28]Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, USA.

[29]Jensen, H.W., Christensen, N.J., 1995. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19(2):215-224.

[30]Kajiya, J.T., 1986. The rendering equation. Comput. Graph., 20(4):143-150.

[31]Kang, C.M., Wang, L., Wang, P., et al., 2015. Coherent photon mapping on the Intel MIC architecture. J. Comput. Sci. Technol., 30(3):519-527.

[32]Kaplanyan, A.S., Dachsbacher, C., 2013. Adaptive progressive photon mapping. ACM Trans. Graph., 32(2):16.1-16.13.

[33]Keller, A., Wald, I., 2000. Efficient importance sampling techniques for the photon map. Proc. Conf. on Vision, Modeling, and Visualization, p.271-278.

[34]Keller, A., Fascione, L., Fajardo, M., et al., 2015. The path tracing revolution in the movie industry. Proc. ACM SIGGRAPH Courses, p.24.1-24.7.

[35]Knaus, C., Zwicker, M., 2011. Progressive photon mapping: a probabilistic approach. ACM Trans. Graph., 30(3):25.1-25.13.

[36]Křivánek, J., Georgiev, I., Hachisuka, T., et al., 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph., 33(4):70-79.

[37]Lafortune, E.P., Willems, Y.D., 1993. Bi-directional path tracing. Proc. Computer Graphics, p.145-153.

[38]Larsen, B.D., Christensen, N.J., 2004. Simulating photon mapping for real-time applications. Proc. 15th Eurographics Conf. on Rendering Techniques, p.123-131.

[39]Lavignotte, F., Paulin, M., 2003. Scalable photon splatting for global illumination. Proc. 1st Int. Conf. on Computer Graphics and Interactive Techniques, p.203-210.

[40]Liu, X.D., Zheng, C.W., 2014a. Adaptive importance photon shooting technique. Comput. Graph., 38:158-166.

[41]Liu, X.D., Zheng, C.W., 2014b. Anisotropic progressive photon mapping. Proc. 5th Int. Conf. on Graphic and Image Processing, Article No. 90690C.

[42]Ma, V.C.H., McCool, M.D., 2002. Low latency photon mapping using block hashing. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.89-99.

[43]Mara, M., Luebke, D., McGuire, M., 2013. Toward practical real-time photon mapping: efficient GPU density estimation. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.71-78.

[44]McGuire, M., Luebke, D., 2009. Hardware-accelerated global illumination by image space photon mapping. Proc. Conf. on High Performance Graphics, p.77-89.

[45]Myszkowski, K., 1997. Lighting reconstruction using fast and adaptive density estimation techniques. Proc. Eurographics Workshop on Rendering Techniques, p.251-262.

[46]Parker, S.G., Bigler, J., Dietrich, A., et al., 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph., 29(4):66.1-66.13.

[47]Purcell, T.J., Donner, C., Cammarano, M., et al., 2003. Photon mapping on programmable graphics hardware. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.41-50.

[48]Roland, S., 2003. Bias compensation for photon maps. Comput. Graph. Forum, 22(4):729-742.

[49]Schjøth, L., 2009. Anisotropic Density Estimation in Global Illumination. PhD Thesis, University of Copenhagen, Denmark.

[50]Schjøth, L., Frisvad, J.R., Erleben, K., 2007. Photon differentials. Proc. 5th Int. Conf. on Computer Graphics and Interactive Techniques, p.179-186.

[51]Schjøth, L., Sporring, J., Olsen, O.F., 2008. Diffusion based photon mapping. Comput. Graph. Forum, 27(8):2114-2127.

[52]Singh, S., Faloutsos, P., 2007. SIMD packet techniques for photon mapping. Proc. IEEE Symp. on Interactive Ray Tracing, p.87-94.

[53]Spencer, B., Jones, M.W., 2009. Into the blue: better caustics through photon relaxation. Comput. Graph. Forum, 28(2):319-328.

[54]Spencer, B., Jones, M.W., 2013a. Photon parameterisation for robust relaxation constraints. Comput. Graph. Forum, 32(2pt1):83-92.

[55]Spencer, B., Jones, M.W., 2013b. Progressive photon relaxation. ACM Trans. Graph., 32(1):7.1-7.11.

[56]Spencer, B., Jones, M.W., Lim, I.S., 2015. A visualization tool used to develop new photon mapping techniques. Comput. Graph. Forum, 34(1):127-140.

[57]Stürzlinger, W., Bastos, R., 1997. Interactive rendering of globally illuminated glossy scenes. Proc. Eurographics Workshop on Rendering Techniques, p.93-102.

[58]Suykens, F., Willems, Y.D., 2000. Density control for photon maps. Proc. 11th Eurographics Workshop on Rendering Techniques, p.23-34.

[59]Tamura, M., Takizawa, H., Kobayashi, H., 2008. A parallel image generation algorithm based on photon map partitioning. Proc. Conf. on Computer Graphics and Imaging, p.145-151.

[60]Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56-79.

[61]Wang, R., Zhou, K., Pan, M., et al., 2009. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph., 28(3):91.1-91.8.

[62]Yao, C.H., Wang, B., Chan, B., et al., 2010. Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput. Graph. Forum, 29(4):1315-1324.

[63]Zhou, K., Hou, Q., Wang, R., et al., 2008. Real-time KD-tree construction on graphics hardware. ACM Trans. Graph., 27(5):126.1-126.12.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE