Full Text:   <2899>

Summary:  <1943>

CLC number: TP212.1

On-line Access: 2017-05-24

Received: 2015-12-11

Revision Accepted: 2016-03-20

Crosschecked: 2017-04-27

Cited: 0

Clicked: 6930

Citations:  Bibtex RefMan EndNote GB/T7714


Hai-feng Zhang


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.5 P.591-598


Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47′′ resolution

Author(s):  Hai Li, Xiao-wei Liu, Rui Weng, Hai-feng Zhang

Affiliation(s):  MEMS Center, Harbin Institute of Technology, Harbin 150001, China; more

Corresponding email(s):   zhanghf@hit.edu.cn

Key Words:  Micro-angle detection, Differential capacitive structure, Rotational gyroscope, Structure optimization

Share this article to: More |Next Article >>>

Hai Li, Xiao-wei Liu, Rui Weng, Hai-feng Zhang. Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47′′ resolution[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 591-598.

@article{title="Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47′′ resolution",
author="Hai Li, Xiao-wei Liu, Rui Weng, Hai-feng Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47′′ resolution
%A Hai Li
%A Xiao-wei Liu
%A Rui Weng
%A Hai-feng Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 5
%P 591-598
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500454

T1 - Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47′′ resolution
A1 - Hai Li
A1 - Xiao-wei Liu
A1 - Rui Weng
A1 - Hai-feng Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 5
SP - 591
EP - 598
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500454

Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure’s capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A low-noise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47′′ (0.00013°), and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.

一种新型转子式陀螺的分辨率为0.47′′ 的转子微偏转角度检测方法

概要:差分电容检测被广泛应用于振动陀螺仪质量块的位移测量,然而由于结构、理论以及接口电路等因素的限制其在转子式陀螺所需的转子偏转角度检测方面还尚未取得较高分辨率。本文提出了一种差分电容检测结构,用以测量一种新型转子式陀螺转子的偏转角度。本文建立了结构电容与转子偏转角度之间关系的数学模型,分析了差分电容与结构参数之间的关系,并获得了初步优化的尺寸参数。设计了一款低噪声读出接口电路将差分电容的变化转换为电压信号。对陀螺仪的转台测试结果表明,该角度检测结构的最小可分辨的偏转角度小于0.47′′ (0.00013°),三次多项式补偿后检测结构的非线性可达0.33%,并可进一步提高。结果表明该检测结构和电路有助于实现该陀螺仪的高精度。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aaltonen, L., Halonen, K.A.I., 2010. An analog drive loop for a capacitive MEMS gyroscope. Anal. Integr. Circ. Sig. Process., 63(3):465-476.

[2]Alper, S.E., Temiz, Y., Akin, T., 2008. A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope. J. Microelectromech. Syst., 17(6):1418-1429.

[3]Challoner, A.D., Ge, H.H., Liu, J.Y., 2014. Boeing disc resonator gyroscope. IEEE/ION Position, Location and Navigation Symp., p.504-514.

[4]Cui, F., Chen, W., Su, Y., et al., 2004. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology. SPIE, 5641:264-275.

[5]Damrongsak, B., Kraft, M., 2006. Design and simulation of a micromachined electrostatically suspended gyroscope. IET Seminar on MEMS Sensors and Actuators, p.267-272.

[6]Fang, R., Lu, W., Tao, T., et al., 2012. A control and readout circuit with capacitive mismatch auto-compensation for MEMS vibratory gyroscope. IEEE 11th Int. Conf. on Solid-State and Integrated Circuit Technology, p.1-3.

[7]Feng, L., Zhang, Z., Sun, Y., et al., 2011. Differential pickup circuit design of a kind of Z-axis MEMS quartz gyroscope. Proc. Eng., 15:999-1003.

[8]Gindila, M.V., Kraft, M., 2003. Electronic interface design for an electrically floating micro-disc. J. Micromech. Microeng., 13(4):S11-S16.

[9]Hays, K., Schmidt, R., Wilson, W., et al., 2002. A submarine navigator for the 21st century. IEEE Position Location and Navigation Symp., p.179-188.

[10]Houlihan, R., Kraft, M., 2002. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 12(4):495.

[11]Huang, X.G., Chen, W.Y., Liu, W., et al., 2007. High resolution differential capacitance detection scheme for micro levitated rotor gyroscope. Chin. J. Aeronaut., 20(6):546-551.

[12]Lam, Q.M., Stamatakos, N., Woodruff, C., et al., 2003. Gyro modeling and estimation of its random noise sources. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.1-11.

[13]Li, H., Liu, X., Wang, B., et al., 2014. Impact of assembly on signal detection from thin-wall rotors of micro-gyroscopes. AIP Adv., 4(3):031341.

[14]Liu, J., Shen, Q., Qin, W., 2015. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines, 6(6):684-698.

[15]Liu, K., Zhang, W.P., Chen, W.Y., et al., 2009. The development of micro-gyroscope technology. J. Micromech. Microeng., 19(11):113001.

[16]Liu, W., Chen, W.Y., Zhang, W.P., et al., 2008. Variable-capacitance micromotor with levitated diamagnetic rotor. Electron. Lett., 44(11):681-683.

[17]Murakoshi, T., Endo, Y., Fukatsu, K., et al., 2003. Electrostatically levitated ring-shaped rotational-gyro/accelerometer. Jpn. J. Appl. Phys., 42(4S): 2468-2472.

[18]Northemann, T., Maurer, M., Rombach, S., et al., 2010. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation. Sens. Actuat. A, 162(2):388-393.

[19]Shearwood, C., Ho, K.Y., Williams, C.B., et al., 2000. Development of a levitated micromotor for application as a gyroscope. Sens. Actuat. A, 83(1-3):85-92.

[20]Sung, W.T., Sung, S., Lee, J.Y., et al., 2008. Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test. J. Micromech. Microeng., 18(5):055028.

[21]Tsai, N.C., Huang, W.M., Chiang, C.W., 2009. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol., 15(4):493-503.

[22]Xia, D., Yu, C., Kong, L., 2014. The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1):1394-1473.

[23]Xia, D., Kong, L., Gao, H., 2015. Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes. Sensors, 15(7):16929-16955.

[24]Xu, H., Liu, X., Yin, L., 2015. A closed-loop mathrmSigmaDelta interface for a high-Q micromechanical capacitive accelerometer with 200 ng/Hz-1/2 input noise density. IEEE J. Solid-State Circ., 50(9):2101-2112.

[25]Xue, L., Jiang, C., Wang, L., et al., 2015. Noise reduction of MEMS gyroscope based on direct modeling for an angular rate signal. Micromachines, 6(2):266-280.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE