Full Text:   <1299>

Summary:  <232>

CLC number: TP2; V448.22

On-line Access: 2017-07-31

Received: 2015-12-31

Revision Accepted: 2016-04-18

Crosschecked: 2017-07-11

Cited: 0

Clicked: 2354

Citations:  Bibtex RefMan EndNote GB/T7714


Sheng-chao Deng

http://orcid.org/0000-0002-4864- 7984

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.7 P.867-881


Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying

Author(s):  Sheng-chao Deng, Tao Meng, Zhong-he Jin

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   dscsd0131@163.com, mengtao@zju.edu.cn

Key Words:  QB50, ZJUCubeSat, Atmospheric drag, Formation flying

Sheng-chao Deng, Tao Meng, Zhong-he Jin. Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 867-881.

@article{title="Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying",
author="Sheng-chao Deng, Tao Meng, Zhong-he Jin",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying
%A Sheng-chao Deng
%A Tao Meng
%A Zhong-he Jin
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 867-881
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500493

T1 - Nonlinear programming control using differential aerodynamic drag for CubeSat formation flying
A1 - Sheng-chao Deng
A1 - Tao Meng
A1 - Zhong-he Jin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 867
EP - 881
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500493

Because of their volume and power limitation, it is difficult for CubeSats to configure a traditional propulsion system. atmospheric drag is one of the space environmental forces that low-orbit satellites can use to realize orbit adjustment. This paper presents an integrated control strategy to achieve the desired in-track formation through the atmospheric drag difference, which will be used on ZJUCubeSat, the next pico-satellite of Zhejiang University and one of the participants of the international QB50 project. The primary mission of the QB50 project is to explore the near-Earth thermosphere and ionosphere at the orbital height of 90–300 km. atmospheric drag cannot be ignored and has a major impact on both attitude and orbit of the satellite at this low orbital height. We conduct aerodynamics analysis and design a multidimensional nonlinear constraint programming (MNLP) strategy to calculate different desired area–mass ratios and corresponding hold times for orbit adjustment, taking both the semimajor axis and eccentricity into account. In addition, area–mass ratio adjustment is achieved by pitch attitude maneuver without any deployable mechanism or corresponding control. Numerical simulation based on ZJUCubeSat verifies the feasibility and advantage of this design.


概要:立方星由于体积和功率限制,难以配置传统的推进系统以实现编队飞行。而大气阻力是低轨卫星可以用于轨道调整的空间环境动力之一。本文提出一种通过大气阻力实现轨道面内沿迹跟飞编队的综合策略,并将用于浙江大学下一颗皮纳卫星(该卫星是国际QB50项目成员之一)。QB50项目主要任务是90-300 km高度近地大气层探测。在这一轨道高度,大气阻力对卫星姿态和轨道的影响均不能忽略。本文通过空气动力学分析,同时考虑大气阻力对轨道半长轴和偏心率的影响,设计了一种多维非线性约束规划策略,以计算实现编队所需的卫星之间不同的目标面质比和相应的轨道调整保持时间。此外,通过俯仰姿态机动调整目标面质比。该算法策略无需卫星配置任何展开机构。基于ZJU CubeSat的数值仿真验证了这一设计的可行性和优势。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bazaraa, M.S., Sherali, H.D., Shetty, C.M., 2013. Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, New Jersey.

[2]Byrd, R.H., Hribar, M.E., Nocedal, J., 1999. An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim., 9(4):877-900.

[3]Cai, B., Wang, H., Zhu, X., et al., 2011. Design of the Earth magnetic field measurement system for pico-satellites. Chin. J. Sens. Actuat., 27(8):1-5 (in Chinese).

[4]Campbell, M., Fullmer, R.R., Hall, C.D., 2000. The ION-F formation flying experiments. AAS/AIAA Space Flight Mechanics Meeting, p.135-149.

[5]Drob, D., Emmert, J., Crowley, G., et al., 2008. An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res. Space Phys., 113:A12304.

[6]Eyer, J.K., Damaren, C.J., Zee, R.E., et al., 2007. A formation flying control algorithm for the CanX-4&5 low Earth orbit nanosatellite mission. Space Technol., 27(4):147-158.

[7]Gaposchkin, E.M., 1994. Calculation of Satellite Drag Coefficients. Technical Report, DTIC Document.

[8]Horsley, M., Nikolaev, S., Pertica, A., 2013. Small satellite rendezvous using differential lift and drag. J. Guid. Contr. Dynam., 36(2):445-453.

[9]Lambert, C., Kumar, B.S., Hamel, J.F., et al., 2012. Implementation and performance of formation flying using differential drag. Acta Astronaut., 71:68-82.

[10]Leonard, C.L., Hollister, W.M., Bergmann, E.V., 1989. Orbital formationkeeping with differential drag. J. Guid. Contr. Dynam., 12(1):108-113.

[11]Liu, L., 2000. Orbit Theory of Spacecraft. National Defense Industry Press, Beijing, p.86-90 (in Chinese).

[12]Lohn, J.D., Hornby, G.S., Linden, D.S., 2005. An evolved antenna for deployment on NASA’s Space Technology 5 Mission. In: O’Reilly, U.M., Yu, T., Riolo, R., et al. (Eds.), Genetic Programming Theory and Practice II. Springer, New York, p.301-315.

[13]Marcos, F.A., 2006. New satellite drag modeling capabilities. 44th AIAA Aerospace Sciences Meeting and Exhibit, p.1-13.

[14]Meng, T., Wang, H., Jin, Z.H., et al., 2009. Attitude stabilization of a pico-satellite by momentum wheel and magnetic coils. J. Zhejiang Univ.-Sci. A, 10(11):1617-1623.

[15]Moe, K., Moe, M.M., 2005. Gas–surface interactions and satellite drag coefficients. Planet. Space Sci., 53(8):793-801.

[16]Montenbruck, O., Gill, E., 2012. Satellite Orbits: Models, Methods and Applications. Springer Science & Business Media.

[17]Pérez, D., Bevilacqua, R., 2013. Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy. Acta Astronaut., 83:196-207.

[18]Picone, J.M., Hedin, A.E., Drob, D.P., et al., 2002. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys., 107(A12):SIA15-1-SIA15-16.

[19]Reid, T., Misra, A.K., 2011. Formation flight of satellites in the presence of atmospheric drag. J. Aerosp. Eng. Sci. Appl., 3(1):64-91.

[20]Reinhard, R., Asma, C., Muylaert, J., 2012. The QB50 project: a Network of 50 Cubesats. Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium.

[21]Schamberg, R., 1959. A New Analytic Representation of Surface Interaction for Hyperthermal Free Molecule Flow with Application to Neutral-Particle Drag Estimates of Satellites. Rand Corporation.

[22]Schaub, H., Alfriend, K.T., 2002. Hybrid Cartesian and orbit element feedback law for formation flying spacecraft. J. Guid. Contr. Dynam., 25(2):387-393.

[23]Vallado, D.A., 2001. Fundamentals of Astrodynamics and Applications. Springer Science & Business Media, Berlin.

[24]Vallado, D.A., Finkleman, D., 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronaut., 95:141-165.

[25]Varma, S., Kumar, K.D., 2012. Multiple satellite formation flying using differential aerodynamic drag. J. Spacecr. Rock., 49(2):325-336.

[26]Wang, J., Wang, H., Ying, P., et al., 2012. Design of four-quadrant analog Sun sensor. Chin. J. Sens. Actuat., 25(12): 1659-1663 (in Chinese).

[27]Yang, M., Wang, H., Wu, C.J., et al., 2012. Space flight validation of design and engineering of the ZDPS-1A pico-satellite. Chin. J. Aeronaut., 25(5):725-738.

[28]Yao, H., Zeng, G.Q., Hu, M., 2010. Time-optimal aerodynamic control for along-track separation of spacecraft formation flying. J. Acad. Equip. Comm. Technol., 21(1):70-73 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE