Full Text:   <1357>

Summary:  <354>

CLC number: TP393

On-line Access: 2016-12-13

Received: 2015-12-31

Revision Accepted: 2016-04-10

Crosschecked: 2016-11-08

Cited: 1

Clicked: 2712

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun-feng Xie

http://orcid.org/0000-0003-0633-2420

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.12 P.1253-1265

http://doi.org/10.1631/FITEE.1500497


Caching resource sharing in radio access networks: a game theoretic approach


Author(s):  Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu

Affiliation(s):  State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   Junfeng_xie@bupt.edu.cn, Renchao_xie@bupt.edu.cn, htao@bupt.edu.cn, richardyu@cunet.carleton.ca

Key Words:  Video caching, Oligopoly market, Game theory, Nash equilibrium, Stability analysis


Share this article to: More |Next Article >>>

Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. Caching resource sharing in radio access networks: a game theoretic approach[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(12): 1253-1265.

@article{title="Caching resource sharing in radio access networks: a game theoretic approach",
author="Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="12",
pages="1253-1265",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500497"
}

%0 Journal Article
%T Caching resource sharing in radio access networks: a game theoretic approach
%A Jun-feng Xie
%A Ren-chao Xie
%A Tao Huang
%A Jiang Liu
%A F. Richard Yu
%A Yun-jie Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 12
%P 1253-1265
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500497

TY - JOUR
T1 - Caching resource sharing in radio access networks: a game theoretic approach
A1 - Jun-feng Xie
A1 - Ren-chao Xie
A1 - Tao Huang
A1 - Jiang Liu
A1 - F. Richard Yu
A1 - Yun-jie Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 12
SP - 1253
EP - 1265
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500497


Abstract: 
Deployment of caching in wireless networks has been considered an effective method to cope with the challenge brought on by the explosive wireless traffic. Although some research has been conducted on caching in cellular networks, most of the previous works have focused on performance optimization for content caching. To the best of our knowledge, the problem of caching resource sharing for multiple service provider servers (SPSs) has been largely ignored. In this paper, by assuming that the caching capability is deployed in the base station of a radio access network, we consider the problem of caching resource sharing for multiple SPSs competing for the caching space. We formulate this problem as an oligopoly market model and use a dynamic non-cooperative game to obtain the optimal amount of caching space needed by the SPSs. In the dynamic game, the SPSs gradually and iteratively adjust their strategies based on their previous strategies and the information given by the base station. Then through rigorous mathematical analysis, the nash equilibrium and stability condition of the dynamic game are proven. Finally, simulation results are presented to show the performance of the proposed dynamic caching resource allocation scheme.

一种基于博弈论的无线接入网中缓存资源共享方法

概要:随着智能手机、平板电脑等智能终端设备的快速普及,无线网络流量呈爆炸式增长,其中占主导地位的视频流量的增长尤为显著,根据思科的预测,从2014年到2019年,移动视频的复合年增长率(Compound annual growth rate, CAGR)为66%。在无线网络中部署缓存被认为是应对流量爆炸式增长的一种有效解决方案。虽然已经有很多论文关注蜂窝网络中的内容缓存问题,但这些论文基本上都集中在内容缓存的性能优化和能量有效,而忽略了多个服务提供商(Service provider servers, SPSs)之间的缓存资源共享问题。然而从SPS的角度,在基站缓存流行的内容,不仅可以改善用户体验,还可以减少对于回程网带宽的需求以节约成本,因此SPS必须要考虑最佳的缓存空间需求量以获得最大的收益。本文我们主要考虑这一问题,即在基站部署缓存的假设前提下,多个SPSs如何有效的共享缓存资源。本文的创新点主要有以下几方面:
• 本文的场景为一个基站和多个SPSs,系统被建模为寡头垄断市场,其中基站是产品(缓存空间)的提供方,以一定的价格(通过价格函数定义)向产品的需求方(SPSs)收取费用,SPSs共享基站的缓存空间。
• 我们将SPSs对于缓存空间的竞争建模为一个动态的非合作博弈的古诺模型,并通过基于Newton-Raphson方法的迭代算法来获得最佳的缓存空间需求量(古诺模型的纳什均衡解)。
• 仿真部分详细分析了不同参数下的这种动态缓存资源分配机制的性能和稳定性特征。

关键词:视频缓存;寡头垄断市场;博弈论;纳什均衡;稳定性分析

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agiza, H.N., Bischi, G.I., Kopel, M., 1999. Multistability in a dynamic Cournot game with three oligopolists. Math. Comput. Simul., 51(1-2):63-90.

[2]Ahlehagh, H., Dey, S., 2014. Video-aware scheduling and caching in the radio access network. IEEE/ACM Trans. Netw., 22(5):1444-1462.

[3]Arai, S., Fadlullah, Z.M., Ngo, T., et al., 2014. An efficient method for minimizing energy consumption of user equipment in storage-embedded heterogeneous networks. IEEE Wirel. Commun., 21(4):70-76.

[4]Bastug, E., Bennis, M., Debbah, M., 2014. Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag., 52(8):82-89.

[5]Beyranvand, H., Lim, W., Maier, M., et al., 2015. Backhaul-aware user association in FiWi enhanced LTE-A heterogeneous networks. IEEE Trans. Wirel. Commun., 14(6):2992-3003.

[6]Breslau, L., Cao, P., Fan, L., et al., 1999. Web caching and Zipf-like distributions: evidence and implications. Proc. IEEE INFOCOM Jointly with the 18th Annual Conf. of the IEEE Computer and Communications Societies, p.126-134.

[7]Cha, M., Kwak, H., Rodriguez, P., et al., 2009. Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Trans. Netw., 17(5):1357-1370.

[8]Chaudhry, M.T., Ling, T.C., Hussain, S.A., et al., 2015. Thermal-aware relocation of servers in green data centers. em Front. Inform. Technol. Electron. Eng., 16(2): 119-134.

[9]Chuang, M.C., Chen, M.C., 2015. A mobile proxy architecture for video services over high-speed rail environments in LTE-A networks. IEEE Syst. J., 9(4):1264-1272.

[10]Ding, J., Huang, T., Liu, J., et al., 2015. Virtual network embedding based on real-time topological attributes. em Front. Inform. Technol. Electron. Eng., 16(2):109-118.

[11]Dufwenberg, M., 2011. Game theory. Wiley Interdiscip. Rev. Cogn. Sci., 2(2):167-173.

[12]Erman, J., Gerber, A., Hajiaghayi, M., et al., 2011. To cache or not to cache: the 3G case. IEEE Internet Comput., 15(2):27-34.

[13]Golrezaei, N., Mansourifard, P., Molisch, A.F., et al., 2014. Base-station assisted device-to-device communications for high-throughput wireless video networks. IEEE Trans. Wirel. Commun., 13(7):3665-3676.

[14]Gu, J.X., Wang, W., Huang, A.P., et al., 2014. Distributed cache replacement for caching-enable base stations in cellular networks. Proc. IEEE Int. Conf. on Communications, p.2648-2653.

[15]Hamidouche, K., Saad, W., Debbah, M., 2014. Many-to-many matching games for proactive social-caching in wireless small cell networks. Proc. 12th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, p.569-574.

[16]Kelley, C., 2003. Solving Nonlinear Equations with Newton’s Method. Society for Industrial and Applied Mathematics.

[17]Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., et al., 2014. Resource usage prediction for optimal and balanced provision of multimedia services. Proc. IEEE 19th Int. Workshop on Computer Aided Modeling and Design of Communication Links and Networks, p.255-259.

[18]Lee, D., Choi, J., Kim, J.H., et al., 2001. LRFU: a spectrum of policies that subsumes the least recently used and least frequently used policies. IEEE Trans. Comput., 50(12):1352-1361.

[19]Liang, C., Yu, F.R., Zhang, X., 2015. Information-centric network function virtualization over 5G mobile wireless networks. IEEE Netw., 29(3):68-74.

[20]Liu, A., Lau, V., 2015. Exploiting base station caching in MIMO cellular networks: opportunistic cooperation for video streaming. IEEE Trans. Signal Process., 63(1): 57-69.

[21]Liu, J., Huang, T., Chen, J.Y., et al., 2011. A new algorithm based on the proximity principle for the virtual network embedding problem. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(11):910-918.

[22]Liu, Y.X., Li, K.L., Tang, Z., et al., 2015. Energy-aware scheduling with reconstruction and frequency equalization on heterogeneous systems. em Front. Inform. Technol. Electron. Eng., 16(7):519-531.

[23]Malak, D., Al-Shalash, M., 2014. Optimal caching for device-to-device content distribution in 5G networks. Proc. Globecom Workshops, p.863-868.

[24]Mavromoustakis, C.X., 2008. On the impact of caching and a model for storage-capacity measurements for energy conservation in asymmetrical wireless devices. Proc. 16th Int. Conf. on Software, Telecommunications and Computer Networks, p.243-247.

[25]Mavromoustakis, C.X., 2013. Mitigating file-sharing misbehavior with movement synchronization to increase end-to-end availability for delay sensitive streams in vehicular P2P devices. Int. J. Commun. Syst., 26(12):1599-1616.

[26]Ming, Z.X., Xu, M.W., Wang, D., 2014. InCan: in-network cache assisted eNodeB caching mechanism in 4G LTE networks. Comput. Netw., 75(A):367-380.

[27]Nam, Y., Chung, J.M., 2015. Cooperative content delivery for cost minimization in wireless networks. Proc. 17th Asia-Pacific Network Operations and Management Symp., p.566-568.

[28]Niyato, D., Hossain, E., 2007. A game-theoretic approach to competitive spectrum sharing in cognitive radio networks. Proc. IEEE Wireless Communications and Networking Conf., p.16-20.

[29]Niyato, D., Hossain, E., 2008. Competitive spectrum sharing in cognitive radio networks: a dynamic game approach. IEEE Trans. Wirel. Commun., 7(7):2651-2660.

[30]Pedersen, H.A., Dey, S., 2014. Mobile device video caching to improve video QoE and cellular network capacity. Proc. 17th ACM Int. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, p.103-107.

[31]Pedersen, H.A., Dey, S., 2016. Enhancing mobile video capacity and quality using rate adaptation, RAN caching and processing. IEEE/ACM Trans. Netw., 24(2):996-1010.

[32]Pingyod, A., Somchit, Y., 2014a. Content updating method in FemtoCaching. Proc. 11th Int. Joint Conf. on Computer Science and Software Engineering, p.123-127.

[33]Pingyod, A., Somchit, Y., 2014b. Rank-based content updating method in FemtoCaching. Proc. IEEE Region 10 Conf., p.1-6.

[34]Sleator, D.D., Tarjan, R.E., 1985. Amortized efficiency of list update and paging rules. ACM Commun., 28(2):202-208.

[35]Sonis, M., 1996. Once more on Héenon map: analysis of bifurcations. Chaos Solit. Fract., 7(12):2215-2234.

[36]Wang, X.F., Chen, M., Taleb, T., et al., 2014. Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag., 52(2):131-139.

[37]Xie, R., Yu, F.R., Ji, H., 2012a. Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Trans. Veh. Technol., 61(2):770-780.

[38]Xie, R., Yu, F.R., Ji, H., et al., 2012b. Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans. Wirel. Commun., 11(11):3910-3920.

[39]Xu, Y.M., Li, Y., Wang, Z.H., et al., 2014. Coordinated caching model for minimizing energy consumption in radio access network. Proc. IEEE Int. Conf. on Communications, p.2406-2411.

[40]Yang, C.C., Chen, Z.Y., Yao, Y., et al., 2014. Energy efficiency in wireless cooperative caching networks. Proc. IEEE Int. Conf. on Communications, p.4975-4980.

[41]Zhang, Y.D., Xu, X.J., Wang, X.L., et al., 2014. NC-COCA: network coding-based cooperative caching scheme. Proc. IEEE 17th Int. Conf. on Computational Science and Engineering, p.976-980.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE