CLC number: TN91
On-line Access: 2017-10-25
Received: 2016-02-22
Revision Accepted: 2016-08-23
Crosschecked: 2017-09-25
Cited: 0
Clicked: 7195
Jadav Chandra Das, Debashis De. Reversible binary subtractor design using quantum dot-cellular automata[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1416-1429.
@article{title="Reversible binary subtractor design using quantum dot-cellular automata",
author="Jadav Chandra Das, Debashis De",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1416-1429",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1600999"
}
%0 Journal Article
%T Reversible binary subtractor design using quantum dot-cellular automata
%A Jadav Chandra Das
%A Debashis De
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1416-1429
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1600999
TY - JOUR
T1 - Reversible binary subtractor design using quantum dot-cellular automata
A1 - Jadav Chandra Das
A1 - Debashis De
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1416
EP - 1429
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1600999
Abstract: In the field of nanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (CMOS) circuit. QCA has high device density, high operating speed, and extremely low power consumption. reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.
[1]Abdullah-Al-Shafi, M., 2016. Synthesis of Peres and R logic circuits in nanoscopic scale. Commun. Appl. Electron., 4(1):20-25.
[2]Akter, R., Islam, N., Waheed, S., 2015. Implementation of reversible logic gate in quantum dot cellular automata. Int. J. Comput. Appl., 109(1):41-44.
[3]Arjmand, M.M., Soryani, M., Navi, K., 2013. Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circ. Dev. Syst., 7(5):263-272.
[4]Bahar, A.N., Waheed, S., Hossain, N., 2015. A new approach of presenting reversible logic gate in nanoscale. Springer-Plus, 4:153.
[5]Das, J.C., De, D., 2012. Quantum dot-cellular automata based cipher text design for nano-communication. Proc. Int. Conf. on Radar, Communication and Computing, p.224-229.
[6]Das, J.C., De, D., 2015. Reversible binary to grey and grey to binary code converter using QCA. IETE J. Res., 61(3): 223-229.
[7]Das, J.C., De, D., 2016a. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inform. Technol. Electron. Eng., 17(3):224-236.
[8]Das, J.C., De, D., 2016b. User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab. J. Sci. Eng., 41(3): 773-784.
[9]Das, J.C., De, D., 2016c. Optimized design of reversible gates in quantum dot-cellular automata: a review. Rev. Theor. Sci., 4(3):279-286.
[10]Das, J.C., De, D., 2016d. Novel low power reversible encoder design using quantum-dot cellular automata. J. Nano-electron. Optoelectron., 11(4):450-458.
[11]Das, J.C., De, D., 2016e. Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microproc. Microsyst., 42:10-23.
[12]Das, J.C., De, D., 2016f. Reversible comparator design using quantum dot-cellular automata. IETE J. Res., 62(3): 323-330.
[13]Das, J.C., Debnath, B., De, D., 2015. Image steganography using quantum dot-cellular automata. Quant. Matter, 4(5):504-517.
[14]Das, K., De, D., 2010a. Novel approach to design a testable conservative logic gate for QCA implementation. IEEE 2nd Int. Advance Computing Conf., p.82-87.
[15]Das, K., De, D., 2010b. Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA. Int. J. Nanosci., 9(3):201-214.
[16]Das, K., De, D., 2011. Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol. Simul., 37(3):210-225.
[17]Das, K., De, D., De, M., 2013. Realisation of semiconductor ternary quantum dot cellular automata. IET Micro Nano Lett., 8(5):258-263.
[18]Debnath, B, Das, J.C., De, D., 2017. Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circ. Dev. Syst., 11(1):58-67.
[19]Dehghan, B., Roozbeh, A., Zare, J., 2014. Design of low power comparator using DG gate. Circ. Syst., 5(1):7-12.
[20]Dey, A., Das, K., De, D., et al., 2012. Probabilistic defect analysis model for quantum dot cellular automata design at analytical phase. Int. J. Comput. Appl., 55(7):33-41.
[21]Farazkish, R., Khodaparast, F., 2015. Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst., 39(6): 426-433.
[22]Ghosh, B., Agarwal, A., Akram, M.W., 2014a. An efficient quantum-dot cellular automata multi-bit adder design using 5-input majority gate. Quant. Matter, 3(5):448-453.
[23]Ghosh, B., Giridhar, M., Nagaraju, M., et al., 2014b. Ripple carry adder using five input majority gates in quantum dot cellular automata. Quant. Matter, 3(6):495-498.
[24]Gladshtein, M., 2013. Design and simulation of novel adder/ subtractors on quantum-dot cellular automata: radical departure from Boolean logic circuits. Microelectron. J., 44(6):545-552.
[25]Hashemi, S., Navi, K., 2014. Reversible multiplexer design in quantum-dot cellular automata. Quant. Matter, 3(6): 523-528.
[26]Hayati, M., Rezaei, A., 2014. New approaches for modeling and simulation of quantum-dot cellular automata. J. Comput. Electron., 13(2):537-546.
[27]Hennessy, K., Lent, C.S., 2001. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B, 19(5):1752-1755.
[28]Hung, W.N.N., Song, X.Y., Yang, G.W., et al., 2006. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 25(9): 1652-1663.
[29]ITRS, 2005. International Technology Roadmap for Semiconductors. http://www.itrs.net
[30]Janez, M., Pecar, P., Mraz, M., 2012. Layout design of manu-facturable quantum-dot cellular automata. Microelectron. J., 43(7):501-513.
[31]Karim, F., Walus, K., 2014. Calculating the steady-state polarizations of quantum cellular automata (QCA) circuits. J. Comput. Electron., 13(3):569-584.
[32]Kianpour, M., Sabbaghi-Nadooshan, R., 2014. A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst., 38(8):1046-1062.
[33]Lakshmi, S.K., Rajakumar, G., Saminathan, A.G., 2015. Design and analysis of sequential circuits using nanotechnology based quantum dot cellular automata. J. Nano-electron. Optoelectron., 10(5):601-610.
[34]Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5(3):183-191.
[35]Lent, C.S., Tougaw, P.D., 1997. A device architecture for computing with quantum dots. Proc. IEEE, 85(4):541-557.
[36]Lent, C.S., Tougaw, P.D., Porod, W., et al., 1993. Quantum cellular automata. Nanotechnology, 4(1):49-57.
[37]Ma, X.J., Huang, J., Metra, C., et al., 2009. Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test., 25(1):39-54.
[38]Mano, M.M., Ciletti, M.D., 2011. Digital Design: with an Introduction to the Verilog HDL. Prentice Hall, India.
[39]Orlov, A.O., Amlani, I., Bernstein, G.H., et al., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928-930.
[40]Ottavi, M., Pontarelli, S., DeBenedictis, E.P., et al., 2011. Partially reversible pipelined QCA circuits: combining low power with high throughput. IEEE Trans. Nanotechnol., 10(6):1383-1393.
[41]Pradhan, N., De, D., 2013. Spin transfer torque driven magnetic QCA cells. In: Giri, P., Goswami, D., Perumal, A. (Eds.), Advanced Nanomaterials and Nanotechnology. Springer Berlin Heidelberg, p.561-569.
[42]Saravanan, P., Kalpana, P., 2013. A novel and systematic approach to implement reversible gates in quantum dot cellular automata. WSEAS Trans. Circ. Syst., 12(10): 307-316.
[43]Sen, B., Dutta, M., Sikdar, B.K., 2014. Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectron. J., 45(2):239-248.
[44]Shah, N.A., Khanday, F.A., Iqbal, J., 2012. Quantum-dot cellular automata (QCA) design of multi-function reversible logic gate. Commun. Inform. Sci. Manag. Eng., 2(4):8-18.
[45]Smolin, J.A., DiVincenzo, D.P., 1996. Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A, 53(4):2855-2856.
[46]Thapliyal, H., Ranganathan, N., 2009a. Conservative QCA gate (CQCA) for designing concurrently testable molecular QCA circuits. Proc. 22nd Int. Conf. on VLSI Design, p.511-516.
[47]Thapliyal, H., Ranganathan, N., 2009b. Design of efficient reversible binary subtractors based on a new reversible gate. IEEE Computer Society Annual Symp. on VLSI, p.229-234.
[48]Thapliyal, H., Ranganathan, N., 2010. Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol., 9(1):62-69.
[49]Thapliyal, H., Srinivas, M.B., Arabnia, H., 2005. Reversible logic synthesis of half, full and parallel subtractors. Proc. Int. Conf. on Embedded Systems and Applications, p.165-181.
[50]Thapliyal, H., Ranganathan, N., Kotiyal, S., 2013. Design of testable reversible sequential circuits. IEEE Trans. VLSI Syst., 21(7):1201-1209.
[51]Vankamamidi, V., Ottavi, M., Lombardi, F., 2005. A line-based parallel memory for QCA implementation. IEEE Trans. Nanotechnol., 4(6):690-698.
[53]Yang, X.K., Cai, L., Kang, Q., et al., 2012. Clocking mis-alignment tolerance of pipelined magnetic QCA architectures. Microelectron. J., 43(6):386-392.
[53]Zhang, R.M., Walus, K., Wang, W., et al., 2004. A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol., 3(4):443-450.
Open peer comments: Debate/Discuss/Question/Opinion
<1>