Full Text:   <2528>

Summary:  <1582>

CLC number: TP273

On-line Access: 2017-12-04

Received: 2016-05-01

Revision Accepted: 2016-08-15

Crosschecked: 2017-10-18

Cited: 0

Clicked: 6431

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hong Song

http://orcid.org/0000-0002-1000-4764

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.10 P.1488-1498

http://doi.org/10.1631/FITEE.1601221


Modeling of a dynamic dual-input dual-output fast steering mirror system


Author(s):  Hong Song, Jia-heng Zhang, Ping Yang, Hao-cai Huang, Shu-yue Zhan, Teng-jun Liu, Yi-lu Guo, Hang-zhou Wang, Hui Huang, Quan-quan Mu, Mei-fen Fang, Ming-yuan Yang

Affiliation(s):  Ocean College, Zhejiang University, Zhoushan 316021, China; more

Corresponding email(s):   yangping@hdu.edu.cn

Key Words:  Fast steering mirror, Dynamic system, Input-output coupling, Physical modeling, Subspace identification


Hong Song, Jia-heng Zhang, Ping Yang, Hao-cai Huang, Shu-yue Zhan, Teng-jun Liu, Yi-lu Guo, Hang-zhou Wang, Hui Huang, Quan-quan Mu, Mei-fen Fang, Ming-yuan Yang. Modeling of a dynamic dual-input dual-output fast steering mirror system[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(10): 1488-1498.

@article{title="Modeling of a dynamic dual-input dual-output fast steering mirror system",
author="Hong Song, Jia-heng Zhang, Ping Yang, Hao-cai Huang, Shu-yue Zhan, Teng-jun Liu, Yi-lu Guo, Hang-zhou Wang, Hui Huang, Quan-quan Mu, Mei-fen Fang, Ming-yuan Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="10",
pages="1488-1498",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601221"
}

%0 Journal Article
%T Modeling of a dynamic dual-input dual-output fast steering mirror system
%A Hong Song
%A Jia-heng Zhang
%A Ping Yang
%A Hao-cai Huang
%A Shu-yue Zhan
%A Teng-jun Liu
%A Yi-lu Guo
%A Hang-zhou Wang
%A Hui Huang
%A Quan-quan Mu
%A Mei-fen Fang
%A Ming-yuan Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 10
%P 1488-1498
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601221

TY - JOUR
T1 - Modeling of a dynamic dual-input dual-output fast steering mirror system
A1 - Hong Song
A1 - Jia-heng Zhang
A1 - Ping Yang
A1 - Hao-cai Huang
A1 - Shu-yue Zhan
A1 - Teng-jun Liu
A1 - Yi-lu Guo
A1 - Hang-zhou Wang
A1 - Hui Huang
A1 - Quan-quan Mu
A1 - Mei-fen Fang
A1 - Ming-yuan Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 10
SP - 1488
EP - 1498
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601221


Abstract: 
A modeling method is proposed for a dynamic fast steering mirror (FSM) system with dual inputs and dual outputs. A physical model of the FSM system is derived based on first principles, describing the dynamics and coupling between the inputs and outputs of the FSM system. The physical model is then represented in a state-space form. Unknown parameters in the state-space model are identified by the subspace identification algorithm, based on the measured input-output data of the FSM system. The accuracy of the state-space model is evaluated by comparing the model estimates with measurements. The variance-accounted-for value of the state-space model is better than 97%, not only for the modeling data but also for the validation data set, indicating high accuracy of the model. Comparison is also made between the proposed dynamic model and the conventional static model, where improvement in model accuracy is clearly observed. The model identified by the proposed method can be used for optimal controller design for closed-loop FSM systems. The modeling method is also applicable to FSM systems with similar structures.

动态双输入双输出的倾斜镜系统建模

概要:本文主要探究了在传感器采样频率较高(如高速相机、位置传感器中)、倾斜镜动态特性不可忽略的情况下,如何基于实验数据建立开环倾斜镜系统的动态耦合数学模型的问题。分析了系统的动态特性以及输入与输出之间的耦合,提出了基于倾斜镜系统的输入输出数据、采用子空间辨识算法建立倾斜镜系统动态耦合数学模型的方法,并通过实验评估了模型的准确性和建模方法的可行性。实验结果显示,通过该方法所建立的倾斜镜动态耦合模型的VAF(variance-accounted-for)值达到了97%,其准确性相比传统的静态模型有了很大提高,验证了建模方法的可行性。研究成果可用于闭环倾斜镜系统优化反馈控制器的设计,提高系统对于光束偏移矫正的性能。

关键词:倾斜镜;动态系统;输出输出耦合;物理建模;子空间辨识

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alvi, B.A., Asif, M., Siddiqui, F.A., et al., 2014. Fast steering mirror control using embedded self-learning fuzzy controller for free space optical communication. Wirel. Pers. Commun., 76(3):643-656.

[2]Arancibia, N.O.P., Chen, N., Gibson, S., et al., 2006. Adaptive control of a MEMS steering mirror for suppression of laser beam jitter. Proc. American Control Conf., Article 104206.

[3]Cao, Z.L., Mu, Q.Q., Hu, L.F., et al., 2009. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope. Opt. Expr., 17(4):2530-2537.

[4]Cao, Z.L., Mu, Q.Q., Hu, L.F., et al., 2012. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system. Opt. Expr., 20(17):19331-19342.

[5]Chiuso, A., Muradore, R., Marchetti, E., 2010. Dynamic calibration of adaptive optics systems: a system identification approach. IEEE Trans. Contr. Syst. Technol., 18(3):705-713.

[6]Hei, M., Zhang, L.C., Zhou, Q.K., et al., 2015. Model-based design method of two-axis four-actuator fast steering mirror system. J. Centr. South Univ., 22(1):150-158.

[7]Hinnen, K., Verhaegen, M., Doelman, N., 2008. A data-driven H2-optimal control approach for adaptive optics. IEEE Trans. Contr. Syst. Technol., 16(3):381-395.

[8]Jansson, M., Wahlberg, B., 1996. A linear regression approach to state-space subspace system identification. Signal Process., 52(2):103-129.

[9]Lu, Y.F., Fan, D.P., Zhang, Z.Y., 2013. Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror. Opt. Int. J. Light Electron Opt., 124(16):2443-2449.

[10]Mu, Q.Q., Cao, Z.L., Li, C., et al., 2008. Accommodation-based liquid crystal adaptive optics system for large ocular aberration correction. Opt. Lett., 33(24):2898-2900.

[11]Portillo, A.A., Ortiz, G.G., Racho, C., 2001. Fine pointing control for optical communications. Proc. IEEE Aerospace Conf., 1541-1550.

[12]Raj, A.A.B., Selvi, J.A.V., Kumar, D., et al., 2015. Design of cognitive decision making controller for autonomous online adaptive beam steering in free space optical communication system. Wirel. Pers. Commun., 84(1):765-799.

[13]Song, H., Fraanje, R., Schitter, G., et al., 2011. Controller design for a high-sampling-rate closed-loop adaptive optics system with Piezo-driven deformable mirror. Eur. J. Contr., 17(3):290-301.

[14]Tang, T., Ma, J.G., Ge, R., 2011. PID-I controller of charge coupled device-based tracking loop for fast-steering mirror. Opt. Eng., 50(4):043002.

[15]Verhaegen, M., Verdult, V., 2007. Filtering and System Identification: a Least Squares Approach. Cambridge University Press, Cambridge.

[16]Verhaegen, M., Verdult, V., Bergboer, N., 2007. Filtering and System Identification: an Introduction to Using Matlab Software. Delft University of Technology, the Netherlands.

[17]Wang, G., Rao, C.H., 2015. Adaptive control of piezoelectric fast steering mirror for high precision tracking application. Smart Mater. Struct., 24(3):035019.

[18]Yu, Z.L., Cui, N., Chen, X.L., et al., 2015. Hinfty control for fast steering mirror based on the incremental PI controller. Proc. Conf. of the Photoelectronic Technology Committee of the Chinese Society of Astronautics, Article 95210G.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE