Full Text:   <910>

Summary:  <309>

CLC number: TP312

On-line Access: 2016-12-13

Received: 2016-05-16

Revision Accepted: 2016-09-11

Crosschecked: 2016-11-08

Cited: 0

Clicked: 2120

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin Li

http://orcid.org/0000-0002-4859-2477

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.12 P.1344-1359

http://doi.org/10.1631/FITEE.1601225


An efficient prediction framework for multi-parametric yield analysis under parameter variations


Author(s):  Xin Li, Jin Sun, Fu Xiao

Affiliation(s):  Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210013, China; more

Corresponding email(s):   lin65002@hotmail.com

Key Words:  Yield prediction, Parameter variations, Multi-parametric yield, Performance modeling, Sparse representation


Xin Li, Jin Sun, Fu Xiao. An efficient prediction framework for multi-parametric yield analysis under parameter variations[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(12): 1344-1359.

@article{title="An efficient prediction framework for multi-parametric yield analysis under parameter variations",
author="Xin Li, Jin Sun, Fu Xiao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="12",
pages="1344-1359",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601225"
}

%0 Journal Article
%T An efficient prediction framework for multi-parametric yield analysis under parameter variations
%A Xin Li
%A Jin Sun
%A Fu Xiao
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 12
%P 1344-1359
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601225

TY - JOUR
T1 - An efficient prediction framework for multi-parametric yield analysis under parameter variations
A1 - Xin Li
A1 - Jin Sun
A1 - Fu Xiao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 12
SP - 1344
EP - 1359
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601225


Abstract: 
Due to continuous process scaling, process, voltage, and temperature (PVT) parameter variations have become one of the most problematic issues in circuit design. The resulting correlations among performance metrics lead to a significant parametric yield loss. Previous algorithms on parametric yield prediction are limited to predicting a single-parametric yield or performing balanced optimization for several single-parametric yields. Consequently, these methods fail to predict the multi- parametric yield that optimizes multiple performance metrics simultaneously, which may result in significant accuracy loss. In this paper we suggest an efficient multi-parametric yield prediction framework, in which multiple performance metrics are considered as simultaneous constraint conditions for parametric yield prediction, to maintain the correlations among metrics. First, the framework models the performance metrics in terms of PVT parameter variations by using the adaptive elastic net (AEN) method. Then the parametric yield for a single performance metric can be predicted through the computation of the cumulative distribution function (CDF) based on the multiplication theorem and the Markov chain Monte Carlo (MCMC) method. Finally, a copula-based parametric yield prediction procedure has been developed to solve the multi-parametric yield prediction problem, and to generate an accurate yield estimate. Experimental results demonstrate that the proposed multi-parametric yield prediction framework is able to provide the designer with either an accurate value for parametric yield under specific performance limits, or a multi-parametric yield surface under all ranges of performance limits.

考虑设计参数扰动的芯片多元参数成品率预测算法

概要:随着芯片制造工艺的进步,工艺参数、供电电压及片上温度(Process, voltage, and temperature, PVT)等设计参数扰动已成为芯片设计过程的棘手问题,其所产生的性能指标间相关性将导致芯片参数成品率显著下降。但是,当前芯片参数成品率预测算法主要局限于单一性能指标成品率预测或对多个单性能指标成品率进行均衡优化,而不能同时针对多个性能指标约束进行多元参数成品率预测,易造成参数成品率精度缺失。基于以上问题,本文将多个性能指标同时作为约束条件,提出一种芯片多元参数成品率预测方法。该方法首先考虑PVT参数扰动,利用自适应弹性网(Adaptive elastic net, AEN)对芯片性能指标进行建模。然后,基于乘法定理及马尔科夫链蒙特卡罗法,通过求解累积分布函数(Cumulative distribution function, CDF)对单一性能指标的芯片参数成品率进行预测。最后,同时考虑多个芯片性能指标约束,根据Copula方法准确预测芯片多元参数成品率。实验结果表明,本文方法可以在指定性能指标约束下对芯片多元参数成品率进行有效预测,并可为芯片设计人员提供任意性能指标约束下的多元参数成品率预测曲面。

关键词:成品率预测;参数扰动;多元参数成品率;性能建模;稀疏表示

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Banerjee, A., Chatterjee, A., 2015. Signature driven hierarchical post-manufacture tuning of RF systems for performance and power. IEEE Trans. VLSI Syst., 23(2):342- 355.

[2]Bayrakci, A.A., 2015. Stochastic logical effort as a variation aware delay model to estimate timing yield. Integr. VLSI J., 48(1):101-108.

[3]Binois, M., Rullière, D., Roustant, O., 2015. On the estimation of Pareto fronts from the point of view of copula theory. Inform. Sci., 324:270-285.

[4]Haghdad, K., Anis, M., 2012. Timing yield analysis considering process-induced temperature and supply voltage variations. Microelectron. J., 43(12):956-961.

[5]Houda, M., Lisser, A., 2015. Archimedean copulas in joint chance-constrained programming. Commun. Comput. Inform. Sci., 509:126-139.

[6]Huang, B., Du, X., 2008. Probabilistic uncertainty analysis by mean-value first order Saddlepoint approximation. Reliab. Eng. Syst. Safety, 93(2):325-336.

[7]Hwang, E.J., Kim, W., Kim, Y.H., 2013. Timing yield slack for timing yield-constrained optimization and its application to statistical leakage minimization. IEEE Trans. VLSI Syst., 21(10):1783-1796.

[8]Jin, Y.J., 2013. Reliability-based sensitivity analysis for machining precision by saddle-point approximation. Appl. Mech. Mater., 241-244:280-283.

[9]Kaneda, S., Mizumoto, T., Maeno, T., et al., 2015. A cross validation of network system models for delay tolerant networks. Int. Conf. on Mobile Computing and Ubiquitous Networking, p.185-190.

[10]Kao, S.C., Govindaraju, R.S., 2008. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Res., 44(2):333-341.

[11]Kim, G., Silvapulle, M.J., Silvapulle, P., 2007. Comparison of semiparametric and parametric methods for estimating copulas. Comput. Statist. Data Anal., 51(6):2836-2850.

[12]Kondamadugula, S., Naidu, S.R., 2016. Parameter-importance based Monte-Carlo technique for variation-aware analog yield optimization. Proc. 26th edition on Great Lakes Symp. on VLSI, p.51-56.

[13]Lan, W., Wang, H., Tsai, C., 2012. A Bayesian information criterion for portfolio selection. Comput. Statist. Data Anal., 56(1):88-99.

[14]Li, X., 2010. Finding deterministic solution from underdetermined equation: large-scale performance variability modeling of analog/RF circuits. IEEE Trans. Comput.- Aided Des. Integr. Circ. Syst., 29(11):1661-1668.

[15]Li, X., Sun, J., Xiao, F., et al., 2016. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations. Front. Inform. Technol. Electron. Eng., 17(2):160-172.

[16]Liu, X., Tan, S.X.D., Palma-Rodriguez, A.A., et al., 2013. Performance bound analysis of analog circuits in frequency- and time-domain considering process variations. ACM Trans. Des. Autom. Electron. Syst., 19(1):6.

[17]Mande, S.S., Chandorkar, A.N., Iwai, H., 2013. Computationally efficient methodology for statistical characterization and yield estimation due to inter- and intra-die process variations. Proc. 5th Asia Symp. on Quality Electronic Design, p.287-294.

[18]Nateghi, H., El-Sankary, K., 2015. A self-healing technique using ZTC biasing for PVT variations compensation in 65nm CMOS technology. Canadian Conf. on Electrical and Computer Engineering, p.128-131.

[19]Nelson, R.B., 2006. An Introduction to Copulas. Springer, New York.

[20]Panchal, G., Ganatra, A., Kosta, Y.P., et al., 2010. Searching most efficient neural network architecture using Akaike’s information criterion (AIC). Int. J. Comput. Appl., 1(5): 41-44.

[21]Radfar, M., Singh, J., 2014. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling. Microelectron. Reliab., 54(12): 2813-2823.

[22]Srivastava, A., Chopra, K., Shah, S., et al., 2008. A novel approach to perform gate-level yield analysis and optimization considering correlated variations in power and performance. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 27(2):272-285.

[23]Sun, J., Li, J., Ma, D., et al., 2008. Chebyshev affine- arithmetic-based parametric yield prediction under limited descriptions of uncertainty. IEEE Trans. Comput.- Aided Des. Integr. Circ. Syst., 27(10):1852-1865.

[24]Tang, A., Jha, N.K., 2016. GenFin: genetic algorithm-based multiobjective statistical logic circuit optimization using incremental statistical analysis. IEEE Trans. VLSI Syst., 24(3):1126-1139.

[25]Tlelo-Cuautle, E., Sanabria-Borbon, A.C., 2016. Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron., 103(10):1665-1684.

[26]Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., et al., 2012. Integrated circuit generating 3- and 5-scroll attractors. Commun. Nonl. Sci. Numer. Simul., 17(11): 4328-4335.

[27]Visweswariah, C., 2003. Death, taxes and failing chips. Proc. 40th Annual Design Automation Conf., p.343-347.

[28]Wang, D., Hutson, A.D., 2015. Inversion theorem based kernel density estimation for the ordinary least squares estimator of a regression coefficient. Commun. Statist. Theory Methods, 44(8):1571-1579.

[29]Xu, F., Li, C., Jiang, T., 2015. Printed circuit board model updating based on response surface method. J. Beijing Univ. Aeronaut. Astronaut., 41(3):449-455 (in Chinese).

[30]Yuan, X., 2009. Application Research of Markov Chain Simulation in Reliability Analysis. PhD Thesis, Northwestern Polytechnical University, Xi’an, China (in Chinese).

[31]Yuan, X.K., Lu, Z.Z., Qiao, H.W., 2010. Conditional probability Markov chain simulation based reliability analysis method for nonnormal variables. Sci. China Technol. Sci., 53(5):1434-1441.

[32]Zhang, H., Zamar, R.H., 2014. Least angle regression for model selection. Wiley Interdiscipl. Rev. Comput. Statist., 6(2):116-123.

[33]Zou, H., 2006. The adaptive Lasso and its Oracle properties. J. Am. Statist. Assoc., 101(476):1418-1429.

[34]Zou, H., Zhang, H.H., 2009. On the adaptive elastic-net with a diverging number of parameters. Ann. Statist., 37(4): 1733-1751.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE