CLC number: TP27; V24
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-04-22
Cited: 0
Clicked: 19552
Lin Cao, Shuo Tang, Dong Zhang. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 882-897.
@article{title="Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis",
author="Lin Cao, Shuo Tang, Dong Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="7",
pages="882-897",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601363"
}
%0 Journal Article
%T Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis
%A Lin Cao
%A Shuo Tang
%A Dong Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 882-897
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601363
TY - JOUR
T1 - Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis
A1 - Lin Cao
A1 - Shuo Tang
A1 - Dong Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 882
EP - 897
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601363
Abstract: The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable coupling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping relationship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given probability levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR parameters.
[1]Arun Kishore, W.C., Sen, S., Ray, G., et al., 2008. Dynamic control allocation for tracking time-varying control demand. J. Guid. Contr. Dynam., 31(4):1150-1157.
[2]Bolender, M.A., Doman, D.B., 2005. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.2005-6255.
[3]Bolender, M., Oppenheimer, M., Doman, D., 2007. Effects of uncertainty and viscous aerodynamics on dynamics of a flexible air-breathing hypersonic vehicle. AIAA Atmospheric Flight Mechanics Conf. and Exhibit, p.2007-6397.
[4]Chernoff, H., 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat., 23:493-507.
[5]Dickeson, J.J., Rodriguez, A.A., Sirdharan, S., et al., 2009. Decentralized control of an air-breathing scramjet-powered hypersonic vehicle. AIAA Guidance, Navigation and Control Conf., p.2009-6281.
[6]Fernández, B.R., Hedrick, J.K., 1987. Control of multivariable nonlinear systems by the sliding mode method. Int. J. Contr., 46(3):1019-1040.
[7]Fidan, B., Mirmirani, M., Ioannou, P.A., 2003. Flight dynamics and control of air-breathing hypersonic vehicles: reviews and new directions. AIAA Int. Space Planes and Hypersonic Systems and Technologies, p.2003-7081.
[8]Ge, D.M., Huang, X.L., Gao, H.J., 2011. Multi-loop gain- scheduling control of flexible air-breathing hypersonic vehicle. Int. J. Innov. Comput. Inform. Contr., 7(10): 5865-5880.
[9]Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Leaning. Addison-Wesley Publishing Company Inc., Reading.
[10]Grove, K.P., Sigthorsson, D.O., Serrani, A., et al., 2005. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.2005-6144.
[11]Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942-1948.
[12]Kuipers, M.K., Ioannou, P., Fidan, B., et al., 2008. Robust adaptive multiple model controller design for an air-breathing hypersonic vehicle model. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008-7142.
[13]Malik, R.F., Rahman, T.A., Hashim, S.Z.M., et al., 2007. New particle swarm optimizer with Sigmoid increasing inertia weight. Int. J. Comput. Sci. Secur., 1(2):35-44.
[14]Marrison, C.I., Stengel, R.F., 1997. Robust control system design using random search and genetic algorithms. IEEE Trans. Autom. Contr., 42(6):835-839.
[15]Marrison, C.I., Stengel, R.F., 1998. Design of robust control systems for a hypersonic aircraft. J. Guid. Contr. Dynam., 21(1):58-63.
[16]Parker, J.T., Serrani, A.S., Yurkovich, M.A., et al., 2007. Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Contr. Dynam., 30(3):856-869.
[17]Piccoli, B., Zadarnowska, K., Gaeta, M., 2009. Stochastic algorithms for robustness of control performances. Automatica, 45(6):1407-1414.
[18]Preller, D., Smart, M.K., 2015. Longitudinal control strategy for hypersonic accelerating vehicles. J. Spacecr. Rock., 52(3):993-999.
[19]Pu, Z.P., Tan, X.M., Fan, G.L., et al., 2014. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle. Acta Astronaut., 101:16-32.
[20]Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240-255.
[21]Ray, L.R., Stengel, R.F., 1990. Stochastic performance robustness of aircraft control system. AIAA Paper, p.1990-3410.
[22]Rehman, O.U., Petersen, I.R., Fidan, B., 2013. Feedback linearization-based robust nonlinear control design for hypersonic flight vehicles. J. Syst. Contr. Eng., 227(1): 3-11.
[23]Rodriguez, A.A., Dickeson, J.J., Cifdaloz, O., et al., 2008. Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, & tradeoffs. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.2008-6793.
[24]Stengel, R.F., Ryan, L.E., 1989. Multivariable histograms for analysis of linear control system robustness. American Control Conf., p.937-945.
[25]Stengel, R.F., Ryan, L.E., 1991. Stochastic robustness of linear time-invariant control systems. IEEE Trans. Autom. Contr., 36(1):82-87.
[26]Wang, Q., Stengel, R.F., 2000. Robust nonlinear control of a hypersonic aircraft. J. Guid. Contr. Dynam., 23(4): 577-585.
[27]Wang, Q., Stengel, R.F., 2001. Searching for robust minimal-order compensators. J. Dynam. Syst. Meas. Contr., 123(2): 233-236.
[28]Wang, Q., Stengel, R.F., 2002. Robust control of nonlinear systems with parametric uncertainty. Automatica, 38(9): 1591-1599.
[29]Williams, T., Bolender, M., Doman, D., et al., 2006. An aerothermal flexible mode analysis of a hypersonic vehicle. AIAA Paper, p.2006-6647.
[30]Xu, B., Shi, Z.K., 2015. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inform. Sci., 58(7):070201.
[31]Xu, B., Zhang, Y., 2015. Neural discrete back-stepping control of hypersonic flight vehicle with equivalent prediction model. Neurocomputing, 154:337-346.
[32]Xu, B., Fan, Y.H., Zhang, S.M., 2015a. Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping. Neurocomputing, 164:201-209.
[33]Xu, B., Yang, C.G., Pan, Y.P., 2015b. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neur. Netw. Learn. Syst., 26(10):2563-2575.
[34]Xu, B., Guo, Y.Y., Yuan, Y., et al., 2016. Fault-tolerant control using command-filtered adaptive back-stepping technique: application to hypersonic longitudinal flight dynamics. Int. J. Adapt. Contr. Signal Process., 30(4): 553-577.
[35]Xu, H.J., Mirmirani, M.D., Ioannou, P.A., 2004. Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Contr. Dynam., 27(5):829-838.
[36]Zong, Q., Wang, J., Tian, B.L., et al., 2013. Quasi-continuous higher-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Technol., 27(1):127-137.
Open peer comments: Debate/Discuss/Question/Opinion
<1>