Full Text:   <2682>

Summary:  <1744>

CLC number: TP241.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-11-27

Cited: 0

Clicked: 7248

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin Wang

https://orcid.org/0000-0003-3106-021X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.11 P.1316-1327

http://doi.org/10.1631/FITEE.1601707


Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters


Author(s):  Fan Xu, Jin Wang, Guo-dong Lu

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   dwjcom@zju.edu.cn

Key Words:  Cooperative manipulators, Neural networks, Inaccurate translational base frame, Adaptive control, Robust control, Robust control


Fan Xu, Jin Wang, Guo-dong Lu. Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(11): 1316-1327.

@article{title="Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters",
author="Fan Xu, Jin Wang, Guo-dong Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="11",
pages="1316-1327",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601707"
}

%0 Journal Article
%T Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters
%A Fan Xu
%A Jin Wang
%A Guo-dong Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 11
%P 1316-1327
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601707

TY - JOUR
T1 - Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters
A1 - Fan Xu
A1 - Jin Wang
A1 - Guo-dong Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 11
SP - 1316
EP - 1327
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601707


Abstract: 
The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate translational base frame parameters, internal force, modeling uncertainties, joint friction, and external disturbances. A radial basis function neural network is adopted for all kinds of dynamical estimation, including undesired internal force. To validate the effectiveness of the proposed approach, together with simulation studies and analysis, the position tracking errors are shown to asymptotically converge to zero, and the internal force can be maintained in a steady range. Using an adaptive engine, this approach permits accurate online calibration of the relative translational base frame parameters of the involved manipulators. Specialized robust compensation is established for global stability. Using a Lyapunov approach, the controller is proved robust in the face of inaccurate base frame parameters and the aforementioned uncertainties.

基座参数欠精确环境下双机械臂刚体夹持系统的自适应神经鲁棒控制

摘要:针对基座参数欠精确环境下双机械臂刚体夹持系统的自适应调控问题进行研究。提出一种自适应神经鲁棒控制器,能同时解决基座参数欠精确、系统内力、建模不确定性、关节摩擦以及外部干扰等多种问题。该控制器采用一个径向基神经网络来逼近系统包括非预期内力在内的全部动力学部分。结合仿真实验和分析,该控制器能有效保证轨迹跟踪误差渐进收敛于0,并保持内力在可接受范围。在自适应调节机制下,该方法能对系统中双机械臂进一步在线精确标定。为保证系统全局稳定性,该控制器建立定制化鲁棒补偿,结合李雅普诺夫理论,证明该控制器在基座欠精确以及其他多种不确定环境下的鲁棒性。

关键词:协同机械臂;神经网络;欠精确基座平移坐标;自适应控制;鲁棒控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aghili F, 2011. Self-tuning cooperative control of manipulators with position/orientation uncertainties in the closed- kinematic loop. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4187-4193.

[2]Aghili F, 2013. Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model. IEEE/ASME Trans Mechatron, 18(5):1544-1554.

[3]Cheah CC, Liu C, Slotine J, 2004. Approximate Jacobian adaptive control for robot manipulators. IEEE Int Conf on Robtics and Automation, p.3075-3080.

[4]Cheah CC, Liu C, Slotine JJE, 2006. Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans Autom Contr, 51(6):1024-1029.

[5]Cheng L, Hou ZG, Tan M, 2009. Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica, 45(10):2312-2318.

[6]Corke P, 1996. A robotics toolbox for Matlab. IEEE Robot Autom Mag, 3(1):24-32.

[7]Deng H, Wu H, Yang C, et al., 2015. Base frame calibration for multi-robot coordinated systems. IEEE Int Conf on Robotics and Biomimetics, p.1489-1494.

[8]Erhart S, Hirche S, 2013. Adaptive force/velocity control for multi-robot cooperative manipulation under uncertain kinematic parameters. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.307-314.

[9]Gan Y, Dai X., 2011. Base frame calibration for coordinated industrial robots. Robot Auton Syst, 59(7-8):563-570.

[10]Gueaieb W, Al-Sharhan S, Bolic M, 2007a. Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics. Automatica, 43(5): 842-851.

[11]Gueaieb W, Karray F, Al-Sharhan S, 2007b. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Trans Mechatron, 12(2):109- 125.

[12]Lewis F, Jagannathan S, Yesildirak A, 1998. Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, France, p.1-468.

[13]Li Z, Xiao S, Ge SS, et al., 2015. Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization. IEEE Trans Syst Man Cybern Syst, 46(1):1-15.

[14]Liu JF, Abdel-Malek K, 2000. Robust control of planar dual- arm cooperative manipulators. Robot Comput-Integr Manuf, 16(2):109-119.

[15]Liu YC, 2015. Distributed synchronization for heterogeneous robots with uncertain kinematics and dynamics under switching topologies. J Franklin Instit, 352(9):3808- 3826.

[16]Liu YC, Khong MH, 2015. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Trans Mechatron, 20(5):2550-2562.

[17]Lizarralde F, Leite AC, Hsu L, et al., 2013. Adaptive visual servoing scheme free of image velocity measurement for uncertain robot manipulators. Automatica, 49(5):1304- 1309.

[18]Mohajerpoor R, Rezaei M, Talebi A, et al., 2011. A robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc Instit Mech Eng Part I J Syst Contr Eng, 226(4):509-522.

[19]Namvar M, Aghili F, 2005. Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments. IEEE Trans Robot, 21(4):678-694.

[20]Panwar V, Kumar N, Sukavanam N, et al., 2012. Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput, 12(1):216-227.

[21]Park IW, Lee BJ, Cho SH, et al., 2012. Laser-based kinematic calibration of robot manipulator using differential kinematics. IEEE/ASME Trans Mechatron, 17(6):1059-1067.

[22]Park J, Sandberg IW, 1991. Universal approximation using radial-basis-function networks. Neur Comput, 3(2):246- 257.

[23]Parra-Vega V, Arimoto S, Liu YH, et al., 2003. Dynamic sliding pid control for tracking of robot manipulators: theory and experiments. IEEE Trans Robot Autom, 19(6):967- 976.

[24]Su CY, Stepanenko Y, 1995. Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trans Syst Man Cybern, 25(5):871- 878.

[25]Szewczyk J, Plumet F, Bidaud P, 2002. Planning and controlling cooperating robots through distributed impedance. J Robot Syst, 19(6):283-297.

[26]Tavasoli A, Eghtesad M, Jafarian H, 2009. Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam. Robot Auton Syst, 57(2):212-221.

[27]Zhang YH, Wei W, Dan YU, et al., 2011. A tracking and predicting scheme for ping pong robot. J Zhejiang Univ-Sci C (Comput & Electron), 12(2):110-115.

[28]Zhao D, Li S, Zhu Q, 2014a. Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics. Int J Syst Sci, 47(4):1-14.

[29]Zhao D, Ni W, Zhu Q, 2014b. A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing, 140:8-18.

[30]Zhao D, Zhu Q, Li N, et al., 2014c. Synchronized control with neuro-agents for leader–follower based multiple robotic manipulators. Neurocomputing, 124:149-161.

[31]Zribi M, Karkoub M, Huang L, 2000. Modelling and control of two robotic manipulators handling a constrained object. Appl Math Model, 24(12):881-898.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE