Full Text:   <701>

Summary:  <199>

CLC number: TN929.5

On-line Access: 2018-02-06

Received: 2017-01-13

Revision Accepted: 2017-04-23

Crosschecked: 2017-12-20

Cited: 0

Clicked: 2298

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-qiao Chen

http://orcid.org/0000-0003-3491-9237

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.12 P.2101-2110

http://doi.org/10.1631/FITEE.1700028


A non-stationary channel model for 5G massive MIMO systems


Author(s):  Jian-qiao Chen, Zhi Zhang, Tian Tang, Yu-zhen Huang

Affiliation(s):  Department of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding email(s):   jqchen1988@163.com, zhangzhi@bupt.edu.cn, tangtian@bupt.edu.cn, yzh_huang@sina.com

Key Words:  Massive MIMO, Spherical wave-front assumption, Non-stationary property, Birth-death process, Visibility region method


Share this article to: More <<< Previous Article|

Jian-qiao Chen, Zhi Zhang, Tian Tang, Yu-zhen Huang. A non-stationary channel model for 5G massive MIMO systems[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2101-2110.

@article{title="A non-stationary channel model for 5G massive MIMO systems",
author="Jian-qiao Chen, Zhi Zhang, Tian Tang, Yu-zhen Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="12",
pages="2101-2110",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700028"
}

%0 Journal Article
%T A non-stationary channel model for 5G massive MIMO systems
%A Jian-qiao Chen
%A Zhi Zhang
%A Tian Tang
%A Yu-zhen Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 12
%P 2101-2110
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700028

TY - JOUR
T1 - A non-stationary channel model for 5G massive MIMO systems
A1 - Jian-qiao Chen
A1 - Zhi Zhang
A1 - Tian Tang
A1 - Yu-zhen Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 12
SP - 2101
EP - 2110
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700028


Abstract: 
We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model, a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.

基于非稳定性的5G大规模MIMO信道建模

概要:本文提出一种新型的大规模多输入多输出(massive multiple-input multiple-output, MIMO)通信系统信道模型,同时考虑了球面波假设以及随着天线阵列和时间变化的散射体非稳定特性。由于大规模天线阵列的引入,会导致接收端的不同天线阵子的到达角和多普勒频移不同,因此,采用球面波假设来刻画近场效应。此外,为在接收端刻画不同散射体对天线阵子的可见性,本文提出一种散射体可见区域法同时,对应于理论模型,本文提出了一种有限散射体仿真信道模型。最后,以统计特性作为指标,研究了球面波假设和散射体非稳定性对massive MMO信道模型的影响。研究结果表明,本文提出的信道模型可以很好地刻画massive MIMO信道特性。

关键词:大规模多输入多输出;球面波假设;非稳定性;生灭过程;散射体可见区域法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP TR 25.996(Release 12), 2014. Spatial channel model for multiple input multiple output (MIMO). http://www.3gpp.org

[2]Babich, F., Lombardi, G., 2000. A Markov model for the mobile propagation channel. IEEE Trans. Veh. Technol., 49(1):63-73.

[3]Bohagen, F., Orten, P., Oien, G.E., 2006. Modeling of line-of-sight 2×2 MIMO channels: spherical versus plane waves. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, p.1-5.

[4]Chong, C.C., Tan, C.M., Laurenson, D.I., et al., 2005. A novel wideband dynamic directional indoor channel model based on a Markov process. IEEE Trans. Wireless Commun., 4(4):1539-1552.

[5]Deniz, O., Castrillon, M., Lorenzo, J., et al., 2010. Computer vision based eyewear selector. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(2):79-91.

[6]Gao, X., Tufvesson, F., Edfors, O., et al., 2012. Measured propagation characteristics for very-large MIMO at 2.6 GHz. 46th Asilomar Conf. Signals, Systems and Computers, p.295-299.

[7]Gao, X., Tufvesson, F., Edfors, O., 2013. Massive MIMO channels&x2014; measurements and models. Asilomar Conf. Signals, Systems and Computers, p.280-284.

[8]Kyösti, P., Meinilä, J., Hentilä, L., et al., 2007. Winner II channel models part II radio channel measurement and analysis results. Tech. Rep., isT-4-027756.

[9]Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.

[10]Li, X.R., Zhou, S.D., Bjornson, E., et al., 2015. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems. IEEE Trans. Wireless Commun., 14(12):7044-7056.

[11]Liu, L.F., Oestges, C., Poutanen, J., et al., 2012. The cost 2100 MIMO channel model. IEEE Wirel. Commun., 19(6):92-99.

[12]Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Sign. Proces., 8(5):742-758.

[13]Paetzold, M., 2011. Mobile Radio Channels. 2nd ed. John Wiley and Sons, West Sussex, UK.

[14]Payami, S., Tufvesson, F., 2012. Channel measurements and analysis for very large array systems at 2.6 GHz. 6th Eur. Conf. Antennas and Propagation, p.433-437.

[15]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag., 30(1):40-60.

[16]Schumacher, L., Pedersen, K.I., Mogensen, P.E., 2002. From antenna spacings to theoretical capacities&x2014;guidelines for simulating MIMO systems. 13th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, 2:587-592.

[17]Wang, C.X., Haider, F., Gao, X.Q., et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52(2):122-130.

[18]Wu, H.L., Jin, S., Gao, X.Q., 2015. Non-stationary multi-ring channel model for massive MIMO systems. Int. Conf. Wireless Communications & Signal Processing, p.1-6.

[19]Wu, S.B., Wang, C.X., Aggoune, E.H.M., et al., 2014. A non-stationary 3D wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun., 32(6):1207-1218.

[20]Wu, S.B., Wang, C.X., Haas, H., et al., 2015. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wireless Commun., 14(3):1434-1446.

[21]Xie, Y., Li, B., Zuo, X.Y., et al., 2015. A 3D geometry-based stochastic model for 5G massive MIMO channels. Int. Conf. Heterogeneous Networking for Quality, Reliability, Security and Robustness, p.216-222.

[22]Yaghjian, A.D., 1986. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag., 34(1):30-45.

[23]Zheng, K., Ou, S.L., Yin, X.F., 2014. Massive MIMO channel models: a survey. Int. J. Antennas Propag., 2014(11):1-10.

[24]Zwick, T., Fischer, C., Didascalou, D, et al., 2000. A stochastic spatial channel model based on wave-propagation modeling. IEEE J. Sel. Areas Commun., 18(1):6-15.

[25]Zwick, T., Fischer, C., Wiesbeck, W., 2002. A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun., 20(6):1178-1192.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE