CLC number: TP391
On-line Access: 2018-09-04
Received: 2017-04-05
Revision Accepted: 2017-05-22
Crosschecked: 2018-07-08
Cited: 0
Clicked: 7097
Yi Lin, Jian-wei Zhang, Hong Liu. An algorithm for trajectory prediction of flight plan based on relative motion between positions[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(7): 905-916.
@article{title="An algorithm for trajectory prediction of flight plan based on relative motion between positions",
author="Yi Lin, Jian-wei Zhang, Hong Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="7",
pages="905-916",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700224"
}
%0 Journal Article
%T An algorithm for trajectory prediction of flight plan based on relative motion between positions
%A Yi Lin
%A Jian-wei Zhang
%A Hong Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 7
%P 905-916
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700224
TY - JOUR
T1 - An algorithm for trajectory prediction of flight plan based on relative motion between positions
A1 - Yi Lin
A1 - Jian-wei Zhang
A1 - Hong Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 7
SP - 905
EP - 916
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700224
Abstract: Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions (RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed (constant, acceleration, or deceleration), yaw (left, right, or straight), and pitch (climb, descent, or cruise) using a hidden Markov model (HMM) under the restrictions of aircraft performance parameters. Then, several gaussian mixture models (GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods.
[1]Alligier R, Gianazza D, Durand N, 2015. Machine learning and mass estimation method for ground-based aircraft climb prediction. IEEE Trans Intell Transp Syst, 16(6): 3138-3149.
[2]Ayhan S, Samet H, 2016. Aircraft trajectory prediction made easy with predictive analytics. ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.21-30.
[3]Barrios C, Motai Y, 2011. Improving estimation of vehicle’s trajectory using the latest global positioning system with Kalman filtering. IEEE Trans Instrum Meas, 60(12): 3747-3755.
[4]Chen ZJ, 2010. Theory and Method of Airspace Management. Science Press, Beijing, China, p.217-227 (in Chinese).
[5]Ding ZM, Yang B, Güting RH, et al., 2015. Network-matched trajectory-based moving-object database: models and applications. IEEE Trans Intell Transp Syst, 16(4): 1918-1928.
[6]Gardi A, Sabatini R, Ramasamy S, et al., 2013. 4-Dimensional trajectory negotiation and validation system for the next generation air traffic management. AIAA Guidance, Navigation, and Control Conf, p.1-15.
[7]Hamed MG, Gianazza D, Serrurier M, et al., 2013. Statistical prediction of aircraft trajectory: regression methods vs point-mass model. 10th USA/Europe Air Traffic Management Research and Development Seminar, p.1-11.
[8]Jeung HY, Shen HT, Zhou XF, 2007. Mining trajectory patterns using hidden Markov models. Int Conf on Data Warehousing and Knowledge Discovery, p.470-480.
[9]Li Z, Li SH, Wu XL, 2015. General aircraft 4D flight trajectory prediction method based on data fusion. Int Conf on Machine Learning and Cybernetics, p.309-315.
[10]Lymperopoulos I, Lygeros J, 2010. Sequential Monte Carlo methods for multi-aircraft trajectory prediction in air traffic management. Int J Adapt Contr Signal Process, 24(10):830-849.
[11]Mahler PSR, 2011. Statistical Multisource-Multitarget Information Fusion. National Defense Industry Press, Beijing, China, p.27-37 (in Chinese).
[12]Morzy M, 2007. Mining frequent trajectories of moving objects for location prediction. Proc 5th Int Conf on Machine Learning and Data Mining in Pattern Recognition, p.667-680.
[13]Naseri A, Neogi N, Rantanen E, 2007. Stockastic hybrid models with applications to air traffic management. AIAA Guidance, Navigation, and Control Conf and Exhibit, p.370-379.
[14]Prento T, Thom A, Blunck H, et al., 2015. Making sense of trajectory data in indoor spaces. IEEE Int Conf on Mobile Data Management, p.9424-9436.
[15]Qiao MY, Bian W, Xu RYD, et al., 2015. Diversified hidden Markov models for sequential labeling. IEEE Trans Knowl Data Eng, 27(11):2947-2960.
[16]Qiao SJ, Jin K, Han N, et al., 2015a. Trajectory prediction algorithm based on Gaussian mixture model. J Softw, 26(5):1048-1063.
[17]Qiao SJ, Shen DY, Wang XT, et al., 2015b. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Trans Intell Transp Syst, 16(1):284-296.
[18]Shanmuganathan SK, 2014. A HMM-Based Prediction Model for Spatio-Temporal Trajectories. MS Thesis, the University of Texas at Arlington, Dallas, USA.
[19]Song LL, 2012. A 4-D trajectory prediction method based on set of historical trajectory. Comput Technol Dev, 12:11-14.
[20]Tang KS, Zhu SF, Xu YQ, et al., 2016. Modeling drivers’ dynamic decision-making behavior during the phase transition period: an analytical approach based on hidden Markov model theory. IEEE Trans Intell Transp Syst, 17(1):206-214.
[21]Tang XM, Chen P, Zhang Y, 2015a. 4D trajectory estimation based on nominal flight profile extraction and airway meteorological forecast revision. Aerosp Sci Technol, 45:387-397.
[22]Tang XM, Gu JW, Shen ZY, et al., 2015b. A flight profile clustering method combining TWED with K-means algorithm for 4D trajectory prediction. Integrated Communication, Navigation, and Surveillance Conf, p.1-9.
[23]Tang XM, Zhou L, Shen ZY, et al., 2015c. 4D trajectory prediction of aircraft taxiing based on fitting velocity profile. 15th COTA Int Conf of Transportation Professionals, p.1-12.
[24]Wandelt S, Sun XQ, 2015. Efficient compression of 4D-trajectory data in air traffic management. IEEE Trans Intell Transp Syst, 16(2):844-853.
[25]Xie AM, Cheng P, 2015. 4D approaching trajectory design in terminal area based on radar data. Appl Mech Mater, 740:731-735.
[26]Yepes JL, Hwang I, Rotea M, 2007. New algorithms for aircraft intent inference and trajectory prediction. J Guid Contr Dynam, 30(2):370-382.
[27]Zahariand A, Jaafar J, 2015. Combining hidden Markov model and case based reasoning for time series forecasting. Commun Comput Inform Sci, 513:237-247.
[28]Zhang JF, Jiang HX, Wu XG, 2014. 4D trajectory prediction based on BADA and aircraft intent. J Southwest Jiaotong Univ, 49(3):553-558.
[29]Zheng Y, Zhou XF, 2012. Computing with Spatial Trajectories. Springer, New York, USA, p.337-394.
Open peer comments: Debate/Discuss/Question/Opinion
<1>