Full Text:   <850>

Summary:  <113>

CLC number: TN911.72

On-line Access: 2019-08-05

Received: 2017-06-09

Revision Accepted: 2017-12-03

Crosschecked: 2019-07-03

Cited: 0

Clicked: 1344

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Quan-dong Wang

http://orcid.org/0000-0001-8775-1437

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.7 P.975-987

http://doi.org/10.1631/FITEE.1700367


Robust generalized sidelobe canceller based on eigenanalysis and a MaxSINR beamformer


Author(s):  Quan-dong Wang, Liang-hao Guo, Wei-yu Zhang, Sui-ling Ren, Chao Yan

Affiliation(s):  State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):   glh2002@mail.ioa.ac.cn

Key Words:  Eigenanalysis, Interference-plus-noise covariance matrix reconstruction, Maximum signal-to-interference-plus-noise ratio criterion, Blocking matrix, Generalized sidelobe canceller, Direction of arrival mismatch


Quan-dong Wang, Liang-hao Guo, Wei-yu Zhang, Sui-ling Ren, Chao Yan. Robust generalized sidelobe canceller based on eigenanalysis and a MaxSINR beamformer[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(7): 975-987.

@article{title="Robust generalized sidelobe canceller based on eigenanalysis and a MaxSINR beamformer",
author="Quan-dong Wang, Liang-hao Guo, Wei-yu Zhang, Sui-ling Ren, Chao Yan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="7",
pages="975-987",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700367"
}

%0 Journal Article
%T Robust generalized sidelobe canceller based on eigenanalysis and a MaxSINR beamformer
%A Quan-dong Wang
%A Liang-hao Guo
%A Wei-yu Zhang
%A Sui-ling Ren
%A Chao Yan
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 7
%P 975-987
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700367

TY - JOUR
T1 - Robust generalized sidelobe canceller based on eigenanalysis and a MaxSINR beamformer
A1 - Quan-dong Wang
A1 - Liang-hao Guo
A1 - Wei-yu Zhang
A1 - Sui-ling Ren
A1 - Chao Yan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 7
SP - 975
EP - 987
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700367


Abstract: 
A robust generalized sidelobe canceller is proposed to combat direction of arrival (DOA) mismatches. To estimate the interference-plus-noise (IPN) statistics characteristics, conventional signal of interest (SOI) extraction methods usually collect a large number of segments where only the IPN signal is active. To avoid that collection procedure, we redesign the blocking matrix structure using an eigenanalysis method to reconstruct the IPN covariance matrix from the samples. Additionally, a modified eigenanalysis reconstruction method based on the rank-one matrix assumption is proposed to achieve a higher reconstruction accuracy. The blocking matrix is obtained by incorporating the effective reconstruction into the maximum signal-to-interference-plus-noise ratio (MaxSINR) beamformer. It can minimize the influence of signal leakage and maximize the IPN power for further noise and interference suppression. Numerical results show that the two proposed methods achieve considerable improvements in terms of the output waveform SINR and correlation coefficients with the desired signal in the presence of a DOA mismatch and a limited number of snapshots. Compared to the first proposed method, the modified one can reduce the signal distortion even further.

基于特征分析和最大信干噪比波束形成器的鲁棒广义旁瓣消除器

摘要:提出一种鲁棒的广义旁瓣消除器抵抗到达方向失配的影响。为估计干扰加噪声的统计特性,传统信号提取方法常需收集大量仅存在干扰噪声的信号片段。为避免该收集过程,我们使用特征分析方法重新设计阻塞矩阵结构,从接收样本中重建干扰噪声的协方差矩阵。另外,基于秩-1矩阵假设,改进特征分析重建方法,以实现更高重建精度。将该重建方法与最大信干噪声比波束形成器结合,获得阻塞矩阵,最大限度减少信号泄漏的影响,并最大化干扰噪声功率,以进一步在最终输出中抑制噪声和干扰成分。数值结果表明,在存在到达方向失配和快照数有限的情况下,上述两种方法在输出波形信干噪比和与期望信号的相关系数方面有显著改进。与所提第一种方法相比,改进后的方法可进一步减少信号失真。

关键词:特征分析;干扰噪声协方差矩阵重建;最大信干噪比准则;阻塞矩阵;广义旁瓣消除器;到达方向失配

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Buckley K, 1987. Spatial/spectral filtering with linearly constrained minimum variance beamformers. IEEE Trans Acoust Speech Signal Process, 35(3):249-266.

[2]Capon J, 1969. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE, 57(8):1408-1418.

[3]Chen FF, Shen F, Song JY, 2015. Robust adaptive beamforming using low-complexity correlation coefficient calculation algorithms. Electron Lett, 51(6):443-445.

[4]Chen P, Zhao YJ, Liu CC, 2016. Robust adaptive beamforming using a low-complexity steering vector estimation and covariance matrix reconstruction algorithm. Int J Antenn Propag, 2016:2438183.

[5]Cornelis B, Moonen M, Wouters J, 2011. Performance analysis of multichannel Wiener filter-based noise reduction in hearing aids under second order statistics estimation errors. IEEE Trans Audio Speech Lang Process, 19(5): 1368-1381.

[6]Crochiere R, 1980. A weighted overlap-add method of short-time Fourier analysis/synthesis. IEEE Trans Acoust Speech Signal Process, 28(1):99-102.

[7]Doclo S, Spriet A, Wouters J, et al., 2007. Frequency-domain criterion for the speech distortion weighted multichannel Wiener filter for robust noise reduction. Speech Commun, 49(7-8):636-656.

[8]Du L, Li J, Stoica P, 2010. Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans Aerosp Electron Syst, 46(1):449-458.

[9]Feldman DD, 1996. An analysis of the projection method for robust adaptive beamforming. IEEE Trans Antenn Propag, 44(7):1023-1030.

[10]Gannot S, Burshtein D, Weinstein E, 2001. Signal enhancement using beamforming and nonstationarity with applications to speech. IEEE Trans Signal Process, 49(8): 1614-1626.

[11]Gong YY, Wang L, Yao RG, et al., 2017. A robust method to suppress jamming for GNSS array antenna based on reconstruction of sample covariance matrix. Int J Antenn Propag, 2017:9764283.

[12]Griffiths L, Jim C, 1982. An alternative approach to linearly constrained adaptive beamforming. IEEE Trans Antenn Propag, 30(1):27-34.

[13]Gu Y, Leshem A, 2012. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans Signal Process, 60(7):3881-3885.

[14]Gu YJ, Goodman NA., Hong SH, et al., 2014. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process, 96:375-381.

[15]Habets EAP, Benesty J, 2013. Multi-microphone noise reduction based on orthogonal noise signal decompositions. IEEE Trans Audio Speech Lang Process, 21(6):1123-1133.

[16]Haykin S, 2010. Adaptive Filter Theory (4th Ed.). Publishing House of Electronics Industry, Beijing, China (in Chinese).

[17]Herbordt W, Kellermann W, 2002. Analysis of blocking matrices for generalized sidelobe cancellers for non-stationary broadband signals. Proc IEEE Int Conf on Acoustic Speech Signal Processing, p.IV-4187.

[18]Hoshuyama O, Sugiyama A, Hirano A, 1999. A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Trans Signal Process, 47(10):2677-2684.

[19]Huang F, Sheng W, Ma XF, 2012. Modified projection approach for robust adaptive array beamforming. Signal Process, 92(7):1758-1763.

[20]Huang L, Zhang J, Xu X, et al., 2015. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Trans Signal Process, 63(7):1643-1650.

[21]Jia WM, Jin W, Zhou SH, et al., 2013. Robust adaptive beamforming based on a new steering vector estimation algorithm Signal Process, 93(9):2539-2542.

[22]Li J, Stoica P, 2005. Robust Adaptive Beamforming. John Wiley & Sons, New York, USA.

[23]Li WX, Mao XJ, Zhai ZQ, et al., 2016. High performance robust adaptive beamforming in the presence of array imperfections. Int J Antenn Propag, 2016:3743509.

[24]Qian JH, He ZS, Xie JL, et al., 2017. Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint. EURASIP J Adv Signal Process, 2017:1.

[25]Ren SL, Ge FX, Guo X, et al., 2015. Eigenanalysis-based adaptive interference suppression and its application in acoustic source range estimation. IEEE J Ocean Eng, 40(4):903-916.

[26]Shen F, Chen FF, Song JY, 2015. Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction. IEEE Commun Lett, 19(9):1636-1639.

[27]Souden M, Benesty J, Affes S, 2010. On optimal frequency-domain multichannel linear filtering for noise reduction. IEEE Trans Audio Speech Lang Process, 18(2):260-276.

[28]Spriet A, Moonen M, Wouters J, 2004. Spatially pre-processed speech distortion weighted multi-channel Wiener filtering for noise reduction. Signal Process, 84(12):2367-2387.

[29]Talmon R, Cohen I, Gannot S, 2009. Convolutive transfer function generalized sidelobe canceler. IEEE Trans Audio Speech Lang Process, 17(7):1420-1434.

[30]van Trees HL, 2002. Optimum array processing. In: Detection, Estimation, and Modulation Theory, Part IV. Wiley & Sons, New York, NY, USA.

[31]Wang L, Gerkmann T, Doclo S, 2015. Noise power spectral density estimation using MaxNSR blocking matrix. IEEE/ACM Trans Audio Speech Lang Process, 23(9): 1493-1508.

[32]Wang Y, Bao QL, Chen, ZP, 2016. Robust adaptive beamforming using IAA-based interference-plus-noise covariance matrix reconstruction. Electron Lett, 52(13):1185-1186.

[33]Warsitz E, Haeb-Umbach R, 2007. Blind acoustic beamforming based on generalized eigenvalue decomposition. IEEE Trans Audio Speech Lang Process, 15(5):1529-1539.

[34]Warsitz E, Krueger A, Haeb-Umbach R, 2008. Speech enhancement with a new generalized eigenvector blocking matrix for application in a generalized sidelobe canceller. Proc IEEE Int Conf on Acoustic Speech Signal Processing, p.73-76.

[35]Yang LC, Qian YT, 2014. Speech enhancement with a GSC-like structure employing sparse coding. J Zhejiang Univ-Sci C (Comput & Electron), 15(12):1154-1163.

[36]Yuan X, Gan L, 2016. Robust algorithm against large look direction error for interference-plus-noise covariance matrix reconstruction. Electron Lett, 52(6):448-450.

[37]Yuan XL, Gan L, 2017. Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Process, 130:233-242.

[38]Zhang ST, Thng ILJ, 2002. Robust presteering derivative constraints for broadband antenna arrays. IEEE Trans Signal Process, 50(1):1-10.

[39]Zhang YP, Li WJ, Chen Q, et al., 2016. A robust adaptive beamformer based on desired signal covariance matrix estimation. Proc IEEE Int Conf on Signal Processing Communications and Computing, p.1-4.

[40]Zhang ZY, Liu W, Leng W, et al., 2016. Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal Process Lett, 23(1):121-125.

[41]Zhao Y, Liu W, Langley RJ, 2011. Adaptive wideband beamforming with frequency invariance constraints. IEEE Trans Antenn Propag, 59(4):1175-1184.

[42]Zhu YT, Zhao YB, Liu J, et al., 2016. Low complexity robust adaptive beamforming for general-rank signal model with positive semidefinite constraint. Front Inform Technol Electron Eng, 17(11):1245-1252.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE