CLC number: TP391
On-line Access: 2018-10-05
Received: 2017-11-29
Revision Accepted: 2018-03-16
Crosschecked: 2018-08-09
Cited: 0
Clicked: 5488
Hussein Yahia, Veronique Garçon, Joel Sudre, Christophe Maes. Effect of wind stress forcing on ocean dynamics at air-sea interface[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(8): 1056-1062.
@article{title="Effect of wind stress forcing on ocean dynamics at air-sea interface",
author="Hussein Yahia, Veronique Garçon, Joel Sudre, Christophe Maes",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="8",
pages="1056-1062",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700797"
}
%0 Journal Article
%T Effect of wind stress forcing on ocean dynamics at air-sea interface
%A Hussein Yahia
%A Veronique Garçon
%A Joel Sudre
%A Christophe Maes
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 8
%P 1056-1062
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700797
TY - JOUR
T1 - Effect of wind stress forcing on ocean dynamics at air-sea interface
A1 - Hussein Yahia
A1 - Veronique Garçon
A1 - Joel Sudre
A1 - Christophe Maes
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 8
SP - 1056
EP - 1062
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700797
Abstract: We evidence and study the differences in turbulence statistics in ocean dynamics carried by wind forcing at the air-sea interface. Surface currents at the air-sea interaction are of crucial importance because they transport heat from low to high latitudes. At first order, oceanic currents are generated by the balance of the Coriolis and pressure gradient forces (geostrophic current) and the balance of the Coriolis and the frictional forces dominated by wind stress (Ekman current) in the surface ocean layers. The study was conducted by computing statistical moments on the shapes of spectra computed within the framework of microcanonical multi-fractal formalism. Remotely sensed daily datasets derived from one year of altimetry and wind data were used in this study, allowing for the computation of two kinds of vector fields: geostrophy with and geostrophy without wind stress forcing. We explore the statistical properties of singularity spectra computed from velocity norms and vorticity data, notably in relation with kurtosis information to underline the differences in the turbulent regimes associated with both kinds of velocity fields.
[1]Arbic BK, Polzin KL, Scott JG, et al., 2013. On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. textitJ Phys Oceanogr, 43(2):283-300.
[2]Arneodo A, Bacry E, Muzy JF, 1995. The thermodynamics of fractals revisited with wavelets. textitPhys A, 213(1-2):232-275.
[3]Benzi R, Paladin G, Parisi G, et al., 1984. On the multi-fractal nature of fully developed turbulence and chaotic systems. textitJ Phys A, 17:3521-3531.
[4]Boffetta G, Cencini M, Falcioni M, et al., 2002. Predictability: a way to characterize complexity. textitPhys Rep, 356(6):367-474.
[5]Chelton DB, Ries JC, Haines BJ, et al., 2001. Satellite altimetry. In: Fu LL, Cazenave A (Eds.), Satellite Altimetry and Earth Sciences: a Handbook of Techniques and Applications. Academic Press, London, UK, p.1-122.
[6]Frisch U, 1995. Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, UK.
[7]Garccon VC, Bell TG, Wallace D, et al., 2013. Perspectives and integration in SOLAS Science. In: Liss PS, Johnson MT (Eds.), Ocean-Atmosphere Interactions of Gases and Particles. Springer Berlin Heidelberg, p.247-306.
[8]Hernández-Carrasco I, Sudre J, Garccon V, et al., 2015. Reconstruction of super-resolution ocean pCO2 and air-sea fluxes of CO2 from satellite imagery in the southeastern Atlantic. textitBiogeosciences, 12(17):5229-5245.
[9]Hernández-Carrasco I, Garccon V, Sudre J, et al., 2018. Increasing the resolution of ocean pCO2 maps in the South Eastern Atlantic Ocean merging multi-fractal satellite-derived ocean variables. textitIEEE Trans Geosci Remote Sens, in press.
[10]Lee T, Stammer D, Awaji T, et al., 2010. Ocean state estimation for climate research. Proc OceanObs'09: Sustained Ocean Observations and Information for Society, p.1-9.
[11]Mashayek A, Ferrari R, Merrifield S, et al., 2017. Topographic enhancement of vertical turbulent mixing in the Southern Ocean. textitNat Commun, 8:14197.
[12]Parisi G, Frisch U, 1985. On the singularity structure of fully developed turbulence. In: Ghil M, Benzi R, Parisi G (Eds.), Turbulence and Predictability in Geophysical Fluid Dynamics. North Holland, Amsterdam, p.84-87.
[13]She ZS, Leveque E, 1994. Universal scaling laws in fully developed turbulence. textitPhys Rev Lett, 72(3):336-339.
[14]Sudre J, Maes C, Garccon V, 2013. On the global estimates of geostrophic and Ekman surface currents. textitLimnol Oceanogr: Fluids Environ, 3(1):1-20.
[15]Turiel A, Pérez-Vicente CJ, Grazzini J, 2006. Numerical methods for the estimation of multi-fractal singularity spectra on sampled data: a comparative study. textitJ Comput Phys, 216(1):362-390.
[16]Turiel A, Yahia H, Pérez-Vicente CJ, 2008. Microcanonical multi-fractal formalism—a geometrical approach to multi-fractal systems: Part I. Singularity analysis. textitJ Phys A, 41(1):015501.
[17]Turiel A, Isern-Fontanet J, Umbert M, 2014. Sensibility to noise of new multi-fractal fusion methods for ocean variables. textitNonl Processes Geophys, 21(1):291-301.
[18]Venugopal V, Roux SG, Foufoula-Georgiou E, et al., 2006. Revisiting multi-fractality of high-resolution temporal rainfall using a wavelet-based formalism. textitWater Resour Res, 42(6):W06D14.
[19]Yahia H, Sudre J, Pottier C, et al., 2010. Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade. textitPatt Recogn, 43(10):3591-3604.
Open peer comments: Debate/Discuss/Question/Opinion
<1>