CLC number: O232; V412.4
On-line Access: 2018-12-14
Received: 2018-05-11
Revision Accepted: 2018-07-23
Crosschecked: 2018-11-27
Cited: 0
Clicked: 6076
Li Xie, Yi-qun Zhang, Jun-yan Xu. Hohmann transfer via constrained optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(11): 1444-1458.
@article{title="Hohmann transfer via constrained optimization",
author="Li Xie, Yi-qun Zhang, Jun-yan Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="11",
pages="1444-1458",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800295"
}
%0 Journal Article
%T Hohmann transfer via constrained optimization
%A Li Xie
%A Yi-qun Zhang
%A Jun-yan Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 11
%P 1444-1458
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800295
TY - JOUR
T1 - Hohmann transfer via constrained optimization
A1 - Li Xie
A1 - Yi-qun Zhang
A1 - Jun-yan Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 11
SP - 1444
EP - 1458
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800295
Abstract: Inspired by the geometric method proposed by Jean-Pierre MAREC, we first consider the hohmann transfer problem between two coplanar circular orbits as a static nonlinear programming problem with an inequality constraint. By the Kuhn-Tucker theorem and a second-order sufficient condition for minima, we analytically prove the global minimum of the hohmann transfer. Two sets of feasible solutions are found: one corresponding to the hohmann transfer is the global minimum and the other is a local minimum. We next formulate the hohmann transfer problem as boundary value problems, which are solved by the calculus of variations. The two sets of feasible solutions are also found by numerical examples. Via static and dynamic constrained optimizations, the solution to the hohmann transfer problem is re-discovered, and its global minimum is analytically verified using nonlinear programming.
[1]Avendaño M, Martín-Molina V, Martín-Morales J, et al., 2016. Algebraic approach to the minimum-cost multi-impulse orbit-transfer problem. J Guid Contr Dynam, 39(8):1734-1743.
[2]Avriel M, 2003. Nonlinear Programming: Analysis and Methods. Dover Publications Inc., Mineola, NY, USA.
[3]Barrar RB, 1963. An analytic proof that the Hohmann type transfer is the true minimum two-impulse transfer. Acta Astronaut, 9(1):1-11.
[4]Battin RH, 1987. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York, USA.
[5]Bertsekas DP, 1999. Nonlinear Programming (2nd Ed.). Athena Scientific, Belmont, Egypt.
[6]Bryson AEJr, Ho YC, 1975. Applied Optimal Control. Hemisphere Publishing Corp., Washington, USA.
[7]Cornelisse JW, Schöyer HFR, Wakker KF, 1979. Rocket Propulsion and Spaceflight Dynamics. Pitman, London, UK.
[8]Curtis HD, 2014. Orbital Mechanics for Engineering Students. Elsevier, Amsterdam, the Netherlands.
[9]Guler O, 2010. Foundations of Optimization. Springer, New York, USA.
[10]Gurfil P, Seidelmann PK, 2016. Celestial Mechanics and Astrodynamics: Theory and Practice. Springer Berlin Heidelberg, Germany.
[11]Hazelrigg GA, 1984. Globally optimal impulsive transfers via Green's theorem. J Guid Contr Dynam, 7(4):462-470.
[12]Hohmann W, 1960. The Attainability of Heavenly Bodies. NASA Technical Translation F-44, Washington, USA.
[13]Hull DG, 2003. Optimal Control Theory for Applications. Springer, New York, USA.
[14]Kierzenka J, 1998. Studies in the Numerical Solution of Ordinary Differential Equations. PhD Thesis, Southern Methodist University, Dallas, USA.
[15]Lawden DF, 1963. Optimal Trajectories for Space Navigation. Butterworths, London, UK.
[16]Leitmann G, 1981. The Calculus of Variations and Optimal Control: an Introduction. Springer, New York, USA.
[17]Li DY, Li DZ, 1991. Further discussion on optimal transfer between two circular orbits by dual impulse. Chin Space Sci Technol, 12(6):1-10 (in Chinese).
[18]Longuski JM, Guzmán JJ, Prussing JE, 2014. Optimal Control with Aerospace Applications. Springer, New York, USA.
[19]Marec JP, 1979. Optimal Space Trajectories. Elsevier, Amsterdam.
[20]Mathwig J, 2004. On Properties of the Hohmann Transfer. MS Thesis, Rice University, Houston, Texas, USA.
[21]McCormick GP, 1967. Second order conditions for constrained minima. SIAM J Appl Math, 15(3):641-652.
[22]Miele A, Ciarci‘a M, Mathwig J, 2004. Reflections on the Hohmann transfer. J Optim Theory Appl, 123(2): 233-253.
[23]Moyer HG, 1965. Minimum impulse coplanar circle-ellipse transfer. AIAA J, 3(4):723-726.
[24]Palmore J, 1984. An elementary proof of the optimality of Hohmann transfers. J Guid Contr Dynam, 7(5):629-630.
[25]Pontani M, 2009. Simple method to determine globally optimal orbital transfers. J Guid Contr Dynam, 32(3):899-914.
[26]Prussing JE, 1992. Simple proof of the global optimality of the Hohmann transfer. J Guid Contr Dynam, 15(4): 1037-1038.
[27]Prussing JE, 2010. Primer vector theory and applications. In: Conway BA (Ed.), Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge, p.16-36.
[28]Prussing JE, Conway BA, 1993. Orbital Mechanics. Oxford University Press, New York, USA.
[29]Shampine LF, Gladwell I, Thompson S, 2003. Solving ODEs with Matlab. Cambridge University Press, Cambridge.
[30]Ting L, 1960. Optimum orbital transfer by impulses. ARS J, 30(11):1013-1018.
[31]Vertregt M, 1958. Interplanetary orbits. J Br Interplanet Soc, 16:326-354.
[32]Yu ML, 1990. Selection of launch trajectory for launching geosynchronous satellite. Chin Space Sci Technol, 2(1):21-27 (in Chinese).
[33]Yuan FY, Matsushima K, 1995. Strong Hohmann transfer theorem. J Guid Contr Dynam, 18(2):371-373.
[34]Zefran M, Desai JP, Kumar V, 1996. Continuous motion plans for robotic systems with changing dynamic behavior. Proc 2nd Int Workshop on Algorithmic Foundations of Robotics.
[35]Zhang G, Zhang XY, Cao XB, 2014. Tangent-impulse transfer from elliptic orbit to an excess velocity vector. Chin J Aeronaut, 27(3):577-583.
Open peer comments: Debate/Discuss/Question/Opinion
<1>