Full Text:   <5028>

Summary:  <1544>

CLC number: O439

On-line Access: 2019-06-10

Received: 2018-07-27

Revision Accepted: 2018-10-29

Crosschecked: 2019-05-13

Cited: 0

Clicked: 4973

Citations:  Bibtex RefMan EndNote GB/T7714


Min Gu


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.5 P.608-630


Super-resolution optical microscope: principle, instrumentation, and application

Author(s):  Bao-kai Wang, Martina Barbiero, Qi-ming Zhang, Min Gu

Affiliation(s):  Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia; more

Corresponding email(s):   gumin@usst.edu.cn

Key Words:  Super-resolution, Imaging, Optical microscope

Bao-kai Wang, Martina Barbiero, Qi-ming Zhang, Min Gu. Super-resolution optical microscope: principle, instrumentation, and application[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(5): 608-630.

@article{title="Super-resolution optical microscope: principle, instrumentation, and application",
author="Bao-kai Wang, Martina Barbiero, Qi-ming Zhang, Min Gu",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Super-resolution optical microscope: principle, instrumentation, and application
%A Bao-kai Wang
%A Martina Barbiero
%A Qi-ming Zhang
%A Min Gu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 5
%P 608-630
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800449

T1 - Super-resolution optical microscope: principle, instrumentation, and application
A1 - Bao-kai Wang
A1 - Martina Barbiero
A1 - Qi-ming Zhang
A1 - Min Gu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 5
SP - 608
EP - 630
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800449

Over the past two decades, several fluorescence-and non-fluorescence-based optical microscopes have been developed to break the diffraction limited barrier. In this review, the basic principles implemented in microscopy for super-resolution are described. Furthermore, achievements and instrumentation for super-resolution are presented. In addition to imaging, other applications that use super-resolution optical microscopes are discussed.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abbe E, 1873. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikrosk Anat, 9(1):413-418.

[2]Astratov VN, Darafsheh A, 2017. Methods and Systems for Super-resolution Optical Imaging Using High-Index of Refraction Microspheres and Microcylinders. University of North Carolina at Charlotte, Charlotte, NC, USA.

[3]Azuma T, Kei T, 2015. Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt Expr, 23(11):15003-15011.

[4]Balzarotti F, Eilers Y, Gwosch KC, et al., 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355(6325):606-612.

[5]Barbiero M, Castelletto S, Gan XS, et al., 2017. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci Appl, 6(11):e17085.

[6]Barry JF, Turner MJ, Schloss JM, et al., 2016. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Nat Acad Sci USA, 113(49):14133-14138.

[7]Bates M, Blosser TR, Zhuang XW, 2005. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett, 94(10):108101.

[8]Berning S, Willig KI, Steffens H, et al., 2012. Nanoscopy in a living mouse brain. Science, 335(6068):551.

[9]Betzig E, 1995. Proposed method for molecular optical imaging. Opt Lett, 20(3):237-239.

[10]Betzig E, Patterson GH, Sougrat R, et al., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642-1645.

[11]Biteen JS, Thompson MA, Tselentis NK, et al., 2008. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods, 5(11):947-949.

[12]Böhm U, Hell SW, Schmidt R, 2016. 4Pi-RESOLFT nanoscopy. Nat Commun, 7:10504.

[13]Bossi M, Fölling J, Belov VN, et al., 2008. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett, 8(8):2463-2468.

[14]Bretschneider S, Eggeling C, Hell SW, 2007. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett, 98(21):218103.

[15]Burnette DT, Sengupta P, Dai YH, et al., 2011. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Nat Acad Sci USA, 108(52):21081-21086.

[16]Burnette DT, Shao L, Ott C, et al., 2014. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol, 205(1):83-96.

[17]Butkevich AN, Mitronova GY, Sidenstein SC, et al., 2016. Fluorescent rhodamines and fluorogenic carbopyronines for super‐resolution STED microscopy in living cells. Angew Chem Int Ed, 55(10):3290-3294.

[18]Cao YY, Gan ZS, Jia BH, et al., 2011. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt Expr, 19(20):19486-19494.

[19]Chen XD, Zou CL, Gong ZJ, et al., 2015. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci Appl, 4(1):e230.

[20]Chen ZG, Taflove A, Backman V, 2004. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Expr, 12(7):1214-1220.

[21]Chmyrov A, Keller J, Grotjohann T, et al., 2013. Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods, 10(8): 737-740.

[22]Cordes T, Strackharn M, Stahl SW, et al., 2010. Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett, 10(2):645-651.

[23]Cox S, Rosten E, Monypenny J, et al., 2012. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods, 9(2):195-200.

[24]Darafsheh A, 2013. Optical Super-Resolution and Periodical Focusing Effects by Dielectric Microspheres. PhD Thesis, The University of North Carolina at Charlotte, North Carolina, USA.

[25]Darafsheh A, Walsh GF, Dal Negro L, et al., 2012. Optical super-resolution by high-index liquid-immersed microspheres. Appl Phys Lett, 101(14):141128.

[26]Darafsheh A, Limberopoulos NI, Derov JS, et al., 2014. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl Phys Lett, 104(6):061117.

[27]Davis HC, Ramesh P, Bhatnagar A, et al., 2018. Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat Commun, 9(1):131.

[28]Degen CL, Poggio M, Mamin HJ, et al., 2009. Nanoscale magnetic resonance imaging. Proc Nat Acad Sci USA, 106(5):1313-1317.

[29]de Luca GM, Breedijk RMP, Brandt RAJ, et al., 2013. Re-scan confocal microscopy: scanning twice for better resolution. Biomed Opt Expr, 4(11):2644-2656.

[30]Dertinger T, Colyer R, Iyer G, et al., 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Nat Acad Sci USA, 106(52): 22287-22292.

[31]Dertinger T, Colyer R, Vogel R, et al., 2012. Superresolution optical fluctuation imaging (SOFI). In: Zahavy E, Ordentlich A, Yitzhaki S, et al. (Eds.), Nano-biotechnology for Biomedical and Diagnostic Research. Springer, Dordrecht, Netherlands, p.17-21.

[32]D’Este E, Kamin D, Göttfert F, et al., 2015. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep, 10(8):1246-1251.

[33]Dickson RM, Cubitt AB, Tsien RY, et al., 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 388(6640):355-358.

[34]Donnert G, Keller J, Wurm CA, et al., 2007. Two-color far-field fluorescence nanoscopy. Biophys J, 92(8): L67-L69.

[35]Dunin-Borkowski RE, McCartney MR, Frankel RB, et al., 1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 282(5395):1868-1870.

[36]Dyba M, Hell SW, 2002. Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett, 88(16):163901.

[37]Farahani JN, Schibler MJ, Bentolila LA, 2010. Stimulated emission depletion (STED) microscopy: from theory to practice. Microsc Sci Technol Appl Educ, 2(4): 1539-1547.

[38]Ferrand P, Wenger J, Devilez A, et al., 2008. Direct imaging of photonic nanojets. Opt Expr, 16(10):6930-6940.

[39]Finkler A, Segev Y, Myasoedov Y, et al., 2010. Self-aligned nanoscale SQUID on a tip. Nano Lett, 10(3):1046-1049.

[40]Fiolka R, Shao L, Rego EH, et al., 2012. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Nat Acad Sci USA, 109(14): 5311-5315.

[41]Fischer J, Wegener M, 2011. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt Mater Expr, 1(4):614-624.

[42]Fischer J, Wegener M, 2013. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon Rev, 7(1):22-44.

[43]Fischer J, von Freymann G, Wegener M, 2010. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater, 22(32):3578-3582.

[44]Fölling J, Bossi M, Bock H, et al., 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods, 5(11):943-945.

[45]Galiani S, Waithe D, Reglinski K, et al., 2016. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins. J Biol Chem, 291(33): 16948-16962.

[46]Gan ZS, Cao YY, Evans RA, et al., 2013. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun, 4:2061.

[47]Geissbuehler S, Sharipov A, Godinat A, et al., 2014. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Commun, 5:5830.

[48]Glenn DR, Lee K, Park H, et al., 2015. Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods, 12(8):736-738.

[49]Göttfert F, Wurm CA, Mueller V, et al., 2013. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J, 105(1): L01-L03.

[50]Gregor I, Spiecker M, Petrovsky R, et al., 2017. Rapid nonlinear image scanning microscopy. Nat Methods, 14(11):1087-1089.

[51]Grotjohann T, Testa I, Leutenegger M, et al., 2011. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478(7368):204-208.

[52]Gruber A, Dräbenstedt A, Tietz C, et al., 1997. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 276(5321):2012-2014.

[53]Gu M, 1996. Principles of Three-Dimensional Imaging in Confocal Microscopes. World Scientific, Singapore.

[54]Gu M, 2000. Advanced Optical Imaging Theory. Springer, Berlin, Germany.

[55]Gu M, Cao YY, Castelletto S, et al., 2013. Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope. Opt Expr, 21(15):17639-17646.

[56]Gu M, Kang H, Li XP, 2014. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci Rep, 4:3627.

[57]Gu M, Zhang QM, Lamon S, 2016. Nanomaterials for optical data storage. Nat Rev Mater, 1(12):16070.

[58]Gustafsson MGL, 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc, 198(2):82-87.

[59]Gustafsson MGL, 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Nat Acad Sci USA, 102(37):13081-13086.

[60]Gustafsson MGL, Shao L, Carlton PM, et al., 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J, 94(12):4957-4970.

[61]Han S, Xiong Y, Genov D, et al., 2008. Ray optics at a deep-subwavelength scale: a transformation optics approach. Nano Lett, 8(12):4243-4247.

[62]Hell SW, 2007. Far-field optical nanoscopy. Science, 316(5828):1153-1158.

[63]Hell SW, Kroug M, 1995. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B, 60(5):495-497.

[64]Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780-782.

[65]Hess ST, Girirajan TPK, Mason MD, 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 91(11):4258-4272.

[66]Hirvonen LM, Wicker K, Mandula O, et al., 2009. Structured illumination microscopy of a living cell. Eur Biophys J, 38(6):807-812.

[67]Hofmann M, Eggeling C, Jakobs S, et al., 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Nat Acad Sci USA, 102(49):17565-17569.

[68]Hortigon-Vinagre MP, Zamora V, Burton FL, et al., 2016. The use of ratiometric fluorescence measurements of the voltage sensitive dye Di-4-ANEPPS to examine action potential characteristics and drug effects on human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci, 154(2):320-331.

[69]Hu YS, Nan XL, Sengupta P, et al., 2013. Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nat Methods, 10(2):96-97.

[70]Huang B, Jones SA, Brandenburg B, et al., 2008a. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods, 5(12):1047-1052.

[71]Huang B, Wang WQ, Bates M, et al., 2008b. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319(5864): 810-813.

[72]Ikonen P, Simovski C, Tretyakov S, et al., 2007. Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl Phys Lett, 91(10):104102.

[73]Jacob Z, Alekseyev LV, Narimanov E, 2006. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Expr, 14(18):8247-8256.

[74]Jaskula JC, Bauch E, Arroyo-Camejo S, et al., 2017. Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond. Opt Expr, 25(10):11048-11064.

[75]Jones SA, Shim SH, He J, et al., 2011. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods, 8(6):499-505.

[76]Juette MF, Gould TJ, Lessard MD, et al., 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods, 5(6):527-529.

[77]Kildishev AV, Shalaev VM, 2008. Engineering space for light via transformation optics. Opt Lett, 33(1):43-45.

[78]Kim MS, Scharf T, Haq MT, et al., 2011. Subwavelength-size solid immersion lens. Opt Lett, 36(19):3930-3932.

[79]Klar TA, Hell SW, 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett, 24(14):954-956.

[80]Kner P, Chhun BB, Griffis ER, et al., 2009. Super-resolution video microscopy of live cells by structured illumination. Nat Methods, 6(5):339-342.

[81]Kwon J, Hwang J, Park J, et al., 2015. RESOLFT nanoscopy with photoswitchable organic fluorophores. Sci Rep, 5:17804.

[82]Lakadamyali M, Babcock H, Bates M, et al., 2012. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS One, 7(1):e30826.

[83]Lee JY, Hong BH, Kim WY, et al., 2009. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460(7254):498-501.

[84]Lee SC, Kim K, Kim J, et al., 2009. MR microscopy of micron scale structures. Magn Reson Imag, 27(6):828-833.

[85]Le Sage D, Arai K, Glenn DR, et al., 2013. Optical magnetic imaging of living cells. Nature, 496(7446):486-489.

[86]Lesterlin C, Ball G, Schermelleh L, et al., 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature, 506(7487):249-253.

[87]Li D, Shao L, Chen BC, et al., 2015. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251):3500.

[88]Li L, Guo W, Yan YZ, et al., 2013. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci Appl, 2(9):e104.

[89]Li LJ, Gattass RR, Gershgoren E, et al., 2009. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science, 324(5929):910-913.

[90]Lidke KA, Rieger B, Jovin TM, et al., 2005. Superresolution by localization of quantum dots using blinking statistics. Opt Expr, 13(18):7052-7062.

[91]Liu ZW, Lee H, Xiong Y, et al., 2007. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315(5819):1686.

[92]Lukinavičius G, Reymond L, Umezawa K, et al., 2016. Fluorogenic probes for multicolor imaging in living cells. J Am Chem Soc, 138(30):9365-9368.

[93]Ma CB, Liu ZW, 2010a. Focusing light into deep subwavelength using metamaterial immersion lenses. Opt Expr, 18(5):4838-4844.

[94]Ma CB, Liu ZW, 2010b. A super resolution metalens with phase compensation mechanism. Appl Phys Lett, 96(18): 183103.

[95]Ma CB, Liu ZW, 2011. Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers. J Nanophoton, 5(1): 051604.

[96]Ma CB, Escobar MA, Liu ZW, 2011. Extraordinary light focusing and Fourier transform properties of gradient-index metalenses. Phys Rev B, 84(19):195142.

[97]Mason DR, Jouravlev MV, Kim KS, 2010. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt Lett, 35(12):2007-2009.

[98]Moerner WE, Kador L, 1989. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett, 62(21):2535-2538.

[99]Müller CB, Enderlein J, 2010. Image scanning microscopy. Phys Rev Lett, 104(19):198101.

[100]Nahidiazar L, Agronskaia AV, Broertjes J, et al., 2016. Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS One, 11(7):e0158884.

[101]Ono A, Kato JI, Kawata S, 2005. Subwavelength optical imaging through a metallic nanorod array. Phys Rev Lett, 95(26):267407.

[102]Pan L, Park Y, Xiong Y, et al., 2011. Maskless plasmonic lithography at 22 nm resolution. Sci Rep, 1:175.

[103]Parazzoli CG, Greegor RB, Nielsen JA, et al., 2004. Performance of a negative index of refraction lens. Appl Phys Lett, 84(17):3232-3234.

[104]Patterson G, Davidson M, Manley S, 2010. Superresolution imaging using single-molecule localization. Ann Rev Phys Chem, 61:345-367

[105]Pendry JB, Ramakrishna SA, 2002. Near-field lenses in two dimensions. J Phys Condens Matter, 14(36):8463-8479.

[106]Pham LM, Le Sage D, Stanwix PL, et al., 2011. Magnetic field imaging with nitrogen-vacancy ensembles. New J Phys, 13:045021.

[107]Podolskiy VA, Alekseyev LV, Narimanov EE, 2005. Strongly anisotropic media: the THz perspectives of left-handed materials. J Mod Opt, 52(16):2343-2349.

[108]Qin SY, Yin H, Yang CL, et al., 2016. A magnetic protein biocompass. Nat Mater, 15(2):217-226.

[109]Rai-Choudhury P, 1997. Handbook of Microlithography, Micromachining, and Microfabrication. Vol. 1. Institution of Engineering and Technology, London, UK.

[110]Rankin BR, Moneron G, Wurm CA, et al., 2011. Nanoscopy in a living multicellular organism expressing GFP. Biophys J, 100(12):L63-L65.

[111]Rego EH, Shao L, Macklin JJ, et al., 2012. Nonlinear structured-illumination microscopy with a photo-switchable protein reveals cellular structures at 50-nm resolution. Proc Nat Acad Sci USA, 109(3): E135-E143.

[112]Rho J, Ye ZL, Xiong Y, et al., 2010. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun, 1:143.

[113]Rittweger E, Han KY, Irvine SE, et al., 2009a. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon, 3(3):144-147.

[114]Rittweger E, Wildanger D, Hell SW, 2009b. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys Lett, 86(1):14001.

[115]Roth S, Sheppard CJR, Wicker K, et al., 2013. Optical photon reassignment microscopy (OPRA). Opt Nanosc, 2:5.

[116]Rust MJ, Bates M, Zhuang XW, 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10):793-796.

[117]Sanamrad A, Persson F, Lundius EG, et al., 2014. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc Nat Acad Sci USA, 111(31):11413-11418.

[118]Schermelleh L, Carlton PM, Haase S, et al., 2008. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881):1332-1336.

[119]Schmidt R, Wurm CA, Jakobs S, et al., 2008. Spherical nanosized focal spot unravels the interior of cells. Nat Methods, 5(6):539-544.

[120]Schulz O, Pieper C, Clever M, et al., 2013. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc Nat Acad Sci USA, 110(52):21000-21005.

[121]Scott TF, Kowalski BA, Sullivan AC, et al., 2009. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science, 324(5929):913-917.

[122]Sednev MV, Belov VN, Hell SW, 2015. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods Appl Fluoresc, 3(4):042004.

[123]Shao L, Kner P, Rego EH, et al., 2011. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods, 8(12):1044-1046.

[124]Sheppard CJR, 1988. Super-resolution in confocal imaging. Optik, 80(2):53-54.

[125]Sheppard CJR, Mehta SB, Heintzmann R, 2013. Superresolution by image scanning microscopy using pixel reassignment. Opt Lett, 38(15):2889-2892.

[126]Shroff H, Galbraith CG, Galbraith JA, et al., 2008. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods, 5(5):417-423.

[127]Shtengel G, Galbraith JA, Galbraith CG, et al., 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Nat Acad Sci USA, 106(9):3125-3130.

[128]Shvets G, Trendafilov S, Pendry JB, et al., 2007. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys Rev Lett, 99(5):053903.

[129]Sidenstein SC, D’Este E, Böhm MJ, et al., 2016. Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci Rep, 6:26725.

[130]Subach FV, Patterson GH, Manley S, et al., 2009. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods, 6(2):153-159.

[131]Sun ZJ, Kim HK, 2004. Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett, 85(4):642.

[132]Testa I, Wurm CA, Medda R, et al., 2010. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J, 99(8):2686-2694.

[133]Tønnesen J, Nadrigny F, Willig KI, et al., 2011. Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J, 101(10):2545-2552.

[134]Tsang M, Psaltis D, 2008. Magnifying perfect lens and superlens design by coordinate transformation. Phys Rev B, 77(3):035122.

[135]Uno SN, Kamiya M, Yoshihara T, et al., 2014. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem, 6(8):681-689.

[136]Verslegers L, Catrysse PB, Yu ZF, et al., 2009a. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys Rev Lett, 103(3):033902.

[137]Verslegers L, Catrysse PB, Yu ZF, et al., 2009b. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett, 9(1):235-238.

[138]Vogelsang J, Kasper R, Steinhauer C, et al., 2008. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed, 47(29):5465-5469.

[139]Wang ZB, Guo W, Li L, et al., 2011. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2:218.

[140]Westphal V, Hell SW, 2005. Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett, 94(14): 143903.

[141]Westphal V, Rizzoli SO, Lauterbach MA, et al., 2008. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320(5873):246-249.

[142]Wiedenmann J, Ivanchenko S, Oswald F, et al., 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Nat Acad Sci USA, 101(45):15905-15910.

[143]Willig KI, Harke B, Medda R, et al., 2007. STED microscopy with continuous wave beams. Nat Methods, 4(11):915-918.

[144]Winter FR, Loidolt M, Westphal V, et al., 2017. Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection. Sci Rep, 7:46492.

[145]Xiong Y, Liu ZW, Zhang X, 2009. A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett, 94(20): 203108.

[146]Xu K, Zhong GS, Zhuang XW, 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science, 339(6118):452-456.

[147]Yang H, Moullan N, Auwerx J, et al., 2014. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10(9):1712-1718.

[148]Yang H, Trouillon R, Huszka G, et al., 2016. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett, 16(8):4862-4870.

[149]Yao J, Liu ZW, Liu YM, et al., 2008. Optical negative refraction in bulk metamaterials of nanowires. Science, 321(5891):930.

[150]York AG, Parekh SH, Nogare DD, et al., 2012. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods, 9(7): 749-754.

[151]York AG, Chandris P, Nogare DD, et al., 2013. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat Methods, 10(11):1122-1126.

[152]Zhang X, Liu ZW, 2008. Superlenses to overcome the diffraction limit. Nat Mater, 7(6):435-441.

[153]Zhao Y, Palikaras G, Belov PA, et al., 2010. Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator. New J Phys, 12(10):103045.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE