CLC number: TN929.5
On-line Access: 2020-01-13
Received: 2019-08-08
Revision Accepted: 2019-12-12
Crosschecked: 2019-12-12
Cited: 0
Clicked: 5149
Citations: Bibtex RefMan EndNote GB/T7714
Fei-yan Tian, Xiao-ming Chen. Multiple-antenna techniques in nonorthogonal multiple access: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1665-1697.
@article{title="Multiple-antenna techniques in nonorthogonal multiple access: a review",
author="Fei-yan Tian, Xiao-ming Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="12",
pages="1665-1697",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900405"
}
%0 Journal Article
%T Multiple-antenna techniques in nonorthogonal multiple access: a review
%A Fei-yan Tian
%A Xiao-ming Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 12
%P 1665-1697
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900405
TY - JOUR
T1 - Multiple-antenna techniques in nonorthogonal multiple access: a review
A1 - Fei-yan Tian
A1 - Xiao-ming Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 12
SP - 1665
EP - 1697
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900405
Abstract: As a promising physical layer technique, nonorthogonal multiple access (NOMA) can admit multiple users over the same space-time resource block, and thus improve the spectral efficiency and increase the number of access users. Specifically, NOMA provides a feasible solution to massive internet of Things (IoT) in 5G and beyond-5G wireless networks over a limited radio spectrum. However, severe co-channel interference and high implementation complexity hinder its application in practical systems. To solve these problems, multiple-antenna techniques have been widely used in NOMA systems by exploiting the benefits of spatial degrees of freedom. This study provides a comprehensive review of various multiple-antenna techniques in NOMA systems, with an emphasis on spatial interference cancellation and complexity reduction. In particular, we provide a detailed investigation on multiple-antenna techniques in two-user, multiuser, massive connectivity, and heterogeneous NOMA systems. Finally, future research directions and challenges are identified.
[1]Alavi F, Cumanan K, Ding ZG, et al., 2017. Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties. IEEE Commun Lett, 21(9):2033-2036.
[2]Ali E, Ismail M, Nordin R, et al., 2017. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front Inform Technol Electron Eng, 18(6):753-772.
[3]Ali MS, Tabassum H, Hossain E, 2016a. Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4:6325-6343.
[4]Ali MS, Hossain E, Kim DI, 2016b. Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: user clustering, beamforming, and power allocation. IEEE Access, 5:565-577.
[5]Amin SH, Mehana AH, Soliman SS, et al., 2018. Power allocation for maximum MIMO-NOMA system user-rate. Proc Globecom Workshops, p.1-6.
[6]Arzykulov S, Tsiftsis TA, Nauryzbayev G, et al., 2019. Outage performance of cooperative underlay CR-NOMA with imperfect CSI. IEEE Commun Lett, 23(1):176-179.
[7]Bai L, Zhu L, Yu Q, et al., 2019. Transmit power minimization for vector-pertubation based NOMA systems: a sub-optimal beamforming approach. IEEE Trans Wirel Commun, 18(5):2679-2692.
[8]Cai W, Lv G, Jin Y, 2017. Half-ZF beamforming scheme for downlink two-user multiple input single output-based non-orthogonal multiple access systems. IET Commun, 11(10):1633-1640.
[9]Catarinucci L, de Donno D, Mainetti L, 2015. An IoT-aware architecture for smart healthcare systems. IEEE Int Things J, 2(6):515-526.
[10]Celik A, Al-Qahtani FS, Radaydeh RM, et al., 2017. Cluster formation and joint power-bandwidth allocation for imperfect NOMA in DL-HetNets. Proc Global Communications Conf, p.1-6.
[11]Celik A, Tsai MC, Radaydeh RM, et al., 2019. Distributed cluster formation and power-bandwidth allocation for imperfect NOMA in DL-HetNets. IEEE Trans Commun, 67(2):1677-1692.
[12]Chen C, Cai WB, Cheng X, et al., 2017. Low complexity beamforming and user selection schemes for 5G MIMO-NOMA systems. IEEE J Sel Areas Commun, 35(12):2708-2722.
[13]Chen J, Chen XM, Gerstacker WH, et al., 2016. Resource allocation for a massive MIMO relay aided secure communication. IEEE Trans Inform Forens Secur, 11(8):1700-1711.
[14]Chen SZ, Kang SL, 2018. A tutorial on 5G and the progress in China. Front Inform Technol Electron Eng, 19(3):309-321.
[15]Chen X, 2019. Massive Access for Cellular Internet of Things: Theory and Technique. Springer Press, Germany.
[16]Chen X, Chen HH, 2014. Physical layer security in multi-cell MISO downlink with incomplete CSI—a unified secrecy performance analysis. IEEE Trans Signal Process, 62(23):6286-6297.
[17]Chen X, Yuen C, 2014. Performance analysis and optimization for interference alignment over MIMO interference channels with limited feedback. IEEE Trans Signal Process, 62(7):1785-1795.
[18]Chen X, Zhang Y, 2017. Mode selection in MU-MIMO downlink networks: a physical layer security perspective. IEEE Syst J, 11(2):1128-1136.
[19]Chen X, Gong FK, Li G, et al., 2018. User pairing and pairing scheduling in massive MIMO-NOMA systems. IEEE Commun Lett, 22(4):788-791.
[20]Chen XM, Chen HH, 2013. Interference-aware resource control in multi-antenna cognitive ad hoc networks with heterogeneous delay constraints. IEEE Commun Lett, 17(6):1184-1187.
[21]Chen XM, Jia RD, 2018. Exploiting rateless coding for massive access. IEEE Trans Veh Technol, 67(11):11253-11257.
[22]Chen XM, Yuen C, 2013. Efficient resource allocation in rateless coded MU-MIMO cognitive radio network with QoS provisioning and limited feedback. IEEE Trans Veh Technol, 62(1):395-399.
[23]Chen XM, Zhang ZY, 2010. Exploiting channel angular domain information for precoder design in distributed antenna system. IEEE Trans Signal Process, 58(11):5791-5801.
[24]Chen XM, Zhang ZY, Chen HH, 2010. On distributed antenna system with limited feedback precoding-opportunities and challenges. IEEE Wirel Commun, 17(2):80-88.
[25]Chen XM, Zhang ZY, Chen SL, et al., 2012. Adaptive mode selection for multiuser MIMO downlink employing rateless codes with QoS provisioning. IEEE Trans Wirel Commun, 11(2):790-799.
[26]Chen XM, Wang XM, Chen XF, 2013. Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wirel Commun Lett, 2(6):667-670.
[27]Chen XM, Chen HH, Meng WX, 2014a. Cooperative communications for cognitive radio networks—from theory to applications. IEEE Commun Surv Tutor, 16(3):1180-1193.
[28]Chen XM, Yuen C, Zhang ZY, 2014b. Wireless energy and information transfer tradeoff for limited feedback multi-antenna systems with energy beamforming. IEEE Trans Veh Technol, 63(1):407-412.
[29]Chen XM, Zhang ZY, Chen HH, et al., 2015a. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun Mag, 53(4):133-141.
[30]Chen XM, Lei L, Zhang HZ, et al., 2015b. Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Trans Wirel Commun, 14(9):5135-5146.
[31]Chen XM, Zhong CJ, Yuen C, et al., 2015c. Multi-antenna relay aided wireless physical layer security. IEEE Commun Mag, 53(12):40-46.
[32]Chen XM, Ng DWK, Chen HH, 2016. Secrecy wireless information and power transfer: challenges and opportunities. IEEE Wirel Commun, 23(2):54-61.
[33]Chen XM, Zhang ZY, Zhong CJ, et al., 2017a. Exploiting multiple-antenna techniques for non-orthogonal multiple access. IEEE J Sel Areas Commun, 35(10):2207-2220.
[34]Chen XM, Ng DWK, Gerstacker W, et al., 2017b. A survey on multiple-antenna techniques for physical layer security. IEEE Commun Surv Tutor, 19(2):1027-1053.
[35]Chen XM, Jia RD, Ng DWK, 2018a. The application of relay to massive non-orthogonal multiple access. IEEE Trans Commun, 66(11):5168-5180.
[36]Chen XM, Zhang ZY, Zhong CJ, et al., 2018b. Exploiting inter-user interference for secure massive non-orthogonal multiple access. IEEE J Sel Areas Commun, 36(4):788-801.
[37]Chen XM, Zhang ZY, Zhong CJ, et al., 2018c. Fully non-orthogonal communication for massive access. IEEE Trans Commun, 66(4):1717-1731.
[38]Chen XM, Jia R, Ng DWK, 2019. On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation. IEEE Trans Commun, 67(3):2539-2551.
[39]Chen ZL, Sohrabi F, Yu W, 2018. Sparse activity detection for massive connectivity. IEEE Trans Signal Process, 66(7):1890-1904.
[40]Chen ZY, Ding ZG, Dai XC, 2016a. Beamforming for combating inter-cluster and intra-cluster interfernece in hybrid NOMA systems. IEEE Access, 4:4452-4463.
[41]Chen ZY, Ding ZG, Xu P, et al., 2016b. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun Lett, 20(6):1263-1266.
[42]Cheng HV, Bjornson E, Larsson EG, 2018. Performance analysis of NOMA in training-based multiuser MIMO systems. IEEE Trans Commun, 17(1):372-385.
[43]Chitti K, Rusek F, Tumula C, 2017. Bandwidth minimization under probabilistic constraints and statistical CSI for NOMA. Proc 86th Vehicular Technology Conf, p.1-5.
[44]Choi J, 2015. Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans Commun, 63(3):791-800.
[45]Choi J, 2016a. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun Lett, 20(10):2055-2058.
[46]Choi J, 2016b. On the power allocation for MIMO-NOMA systems with layered transmission. IEEE Trans Wirel Commun, 15(5):3226-3237.
[47]Chraiti M, Ghrayeb A, Assi C, 2018. A NOMA scheme for a two-user MISO downlink channel with unknow CSIT. IEEE Trans Wirel Commun, 17(10):6775-6789.
[48]Cui JJ, Liu YW, Ding ZG, et al., 2018a. Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Trans Wirel Commun, 17(3):1502-1517.
[49]Cui JJ, Ding ZG, Fan PZ, et al., 2018b. Unsupervised machine learning based user clustering in mmwave-NOMA systems. IEEE Trans Wirel Commun, 17(11):7425-7440.
[50]Cui JJ, Ding ZG, Fan PZ, 2018c. Outage probability constrained MIMO-NOMA design under imperfect CSI. IEEE Trans Wirel Commun, 17(12):8239-8255.
[51]Dai JL, Sun L, Yang CY, 2017. On the average rate and power allocation of uplink multi-antenna NOMA systems. Proc 86th Vehicular Technology Conf, p.1-5.
[52]Dai LL, Wang BC, Yuan YF, 2015. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag, 53(9):74-81.
[53]Dai LL, Wang BC, Ding ZG, et al., 2018. A survey of non-orthogonal multiple access for 5G. IEEE Commun Surv Tutor, 20(3):2294-2323.
[54]Dai LL, Wang BC, Peng MG, et al., 2019. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 37(1):131-141.
[55]Dai W, Liu YJ, Rider B, 2008. Quantization bounds on Grassmann manifolds and applications to MIMO communications. IEEE Trans Inform Theory, 54(3):1108-1123.
[56]Ding JF, Cai J, Yi CY, 2019. An improved coalition game approach for MIMO-NOMA clustering integrating beamforming and power allocation. IEEE Trans Veh Technol, 68(2):1672-1687.
[57]Ding ZG, Yang Z, Fan PZ, et al., 2014. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 21(12):1501-1505.
[58]Ding ZG, Adachi F, Poor HV, 2016a. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537-552.
[59]Ding ZG, Schober R, Poor HV, 2016b. A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans Wirel Commun, 15(6):4438-4454.
[60]Ding ZG, Fan PZ, Poor HV, 2016c. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans Veh Technol, 65(8):6010-6023.
[61]Ding ZG, Dai LL, Schober R, et al., 2017a. NOMA meets finite resolution analog beamforming in massive MIMO and milimeter-wave networks. IEEE Commun Lett, 21(8):1879-1882.
[62]Ding ZG, Fan PZ, Poor HV, 2017b. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5:7667-7681.
[63]Ding ZG, Zhao ZY, Peng MG, et al., 2017c. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans Commun, 65(7):3151-3163.
[64]Ding ZG, Lei XF, Karagiannidis GK, 2017d. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181-2195.
[65]Ding ZG, Xu M, Chen Y, et al., 2018. Embracing non-orthogonal multiple access in future wireless networks. Front Inform Technol Electron Eng, 19(3):322-339.
[66]Do TN, da Costa DB, Duong TQ, et al., 2018. Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans Green Commun Netw, 2(1):49-62.
[67]Du Y, Cheng C, Dong BH, et al., 2018a. Block-sparsity-based multiuser detection for uplink grant-free NOMA. IEEE Trans Wirel Commun, 17(12):7894-7909.
[68]Du Y, Dong BH, Zhu WY, et al., 2018b. Joint channel estimation and multiuser detection for uplink grant-free NOMA. IEEE Wirel Commun Lett, 7(4):682-685.
[69]Elijah O, Leow CY, Rahman TA, et al., 2016. A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun Surv Tutor, 18(2):905-923.
[70]Fang F, Zhang HJ, Cheng JL, et al., 2017. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE J Sel Areas Commun, 35(12):2874-2885.
[71]Gomez G, Martin-Vega FJ, Lopez-Martinez FJ, et al., 2019. Physical layer security in uplink NOMA multi-antenna systems with randomly distributed eavesdroppers. IEEE Access, 7:70422-70435.
[72]Hanif MF, Ding ZG, Ratnarajah T, et al., 2016. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans Signal Process, 64(1):76-88.
[73]Haupt RL, Rahmat-Samii Y, 2015. Antenna array developments: a perspective on the past, present and future. IEEE Anten Propag Mag, 57(1):86-96.
[74]He B, Liu A, Yang N, et al., 2017. On the design of secure non-orthogonal multiple access systems. IEEE J Sel Areas Commun, 35(10):2196-2206.
[75]Hosseini K, Yu W, Adve RS, 2014. Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE J Sel Topics Signal Process, 8(5):930-941.
[76]Hoydis J, ten Brink S, Debbah M, 2013. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J Sel Areas Commun, 31(2):160-171.
[77]Hu CY, Wang YS, Hong YWP, et al., 2017. MMSE hybrid beamforming for weighted sum rate maximization in NOMA systems. Proc Global Communications Conf, p.1-6.
[78]Hu XL, Zhong CJ, Han Y, et al., 2019. Angle-domain mmWave MIMO NOMA systems: analysis and design. Proc Int Conf on Communications, p.1-6.
[79]Islam SMR, Avazov N, Dobre OA, 2017. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun Surv Tutor, 19(2):721-742.
[80]Jia RD, Chen XM, Zhong CJ, et al., 2019. Design of non-orthogonal beamspace multiple access for cellular Internet-of-Things. IEEE J Sel Top Signal Process, 13(3):538-552.
[81]Kader F, Shin SY, 2016. Cooperative spectrum sharing with space time block coding and non-orthogonal multiple access. Proc 8th Int Conf on Ubiquitous and Future Networks, p.490-494.
[82]Kang JM, Kim IM, 2018. Optimal user grouping for downlink NOMA. IEEE Wirel Commun Lett, 7(5):724-727.
[83]Khisti A, Wornell GW, 2010. Secure transmission with multiple antennas I: the MISOME wiretap channel. IEEE Trans Inform Theory, 56(7):3088-3014.
[84]Kim B, Lim S, Kim H, et al., 2013. Non-orthogonal multiple access in a downlink multiuser beamforming system. Proc Military Communications Conf, p.1278-1283.
[85]Kim J, Koh J, Kang J, et al., 2015. Design of user clustering and precoding for downlink non-orthogonal multiple access (NOMA). Proc Military Communications Conf, p.1170-1175.
[86]Lei HJ, Zhang JM, Park KH, et al., 2018. Secrecy outage of max-min TAS scheme in MIMO-NOMA systems. IEEE Trans Veh Technol, 67(8):6981-6990.
[87]Lei L, Yuan D, Ho CK, et al., 2016. Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans Wirel Commun, 15(12):8580-8594.
[88]Li F, Zhang QT, 2007. Transmission strategy for MIMO correlated Rayleigh fading channels with mutual coupling. Proc Int Conf on Communications, p.1030-1035.
[89]Li YQ, Jiang M, Zhang Q, et al., 2017. Secure beamforming in downlink MISO nonorthogonal multiple access systems. IEEE Trans Veh Technol, 66(8):7563-7567.
[90]Li YQ, Jiang M, Zhang Q, et al., 2018. Cooperative non-orthogonal multiple access in multiple-input-multiple-output channels. IEEE Trans Wirel Commun, 17(3):2068-2079.
[91]Liang W, Ding ZG, Li YH, et al., 2017. User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans Commun, 65(12):5319-5332.
[92]Liu F, Petrova M, 2018. Dynamic power allocation for downlink multi-carrier NOMA systems. IEEE Commun Lett, 22(9):1930-1933.
[93]Liu JX, Xiong K, Lu Y, et al., 2008. SWIPT-enabled NOMA networks with full-duplex relaying. Proc Global Communications Conf, p.1-6.
[94]Liu L, Larsson EG, Yu W, et al., 2018. Sparse signal processing for grant-free massive connectivity: a future paradigm for random access protocols in the Internet of Things. IEEE Signal Process Mag, 35(5):88-99.
[95]Liu L, Chi YH, Yuen C, et al., 2019. Capacity-achieving MIMO-NOMA: iterative LMMSE detection. IEEE Trans Signal Process, 67(7):1758-1773.
[96]Liu PL, Li Y, Cheng W, et al., 2019. Energy-efficient power allocation for millimeter wave beamspace MIMO-NOMA systems. IEEE Access, 7:114582-114592.
[97]Liu X, Liu YN, Wang XB, et al., 2017. Highly efficient 3-D resource allocation techniques in 5G for NOMA-enabled massive MIMO and relaying systems. IEEE J Sel Areas Commun, 35(12):2785-2797.
[98]Liu YW, Elkashlan M, Ding ZG, et al., 2016. Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Commun Lett, 20(7):1465-1468.
[99]Liu YW, Qin ZJ, Elkashlan M, et al., 2017. Nonorthogonal multiple access for 5G and beyond. Proc IEEE, 105(12):2347-2381.
[100]Liu ZX, Lei L, Zhang NB, et al., 2017. Joint beamforming and power optimization with iterative user clustering for MISO-NOMA systems. IEEE Access, 5:6872-6884.
[101]Love DJ, Heath RW, Lau VKN, et al., 2008. An overview of limited feedback in wireless communication systems. IEEE J Sel Areas Commun, 26(8):1341-1365.
[102]Lu L, Li GY, Swindlehurst AL, et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process, 8(5):742-758.
[103]Lv L, Chen J, Ni Q, 2016. Cooperative non-orthogonal multiple access in cognitive radio. IEEE Commun Lett, 20(10):2059-2062.
[104]Lv L, Ni Q, Ding ZG, et al., 2017. Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol, 66(6):5506-5511.
[105]Lv L, Ding ZG, Ni Q, et al., 2018a. Secure MISO-NOMA transmission with artificial noise. IEEE Trans Veh Technol, 67(7):6700-6705.
[106]Lv L, Yang L, Jiang H, et al., 2018b. When NOMA meets multiuser cognitive radio: opportunistic cooperation and user scheduling. IEEE Trans Veh Technol, 67(7):6679-6684.
[107]Lv T, Ma Y, Zeng J, et al., 2018. Millimeter-wave NOMA transmission in cellular M2M communications for Internet of Things. IEEE Internet Things J, 5(3):1989-2000.
[108]Manglayev T, Kizilirmak RC, Kho YH, et al., 2017. NOMA with imperfect SIC implementation. Proc 17th Int Conf on Smart Technologies, p.22-25.
[109]Mei XD, Wu KL, 2018. How low does mutual coupling need to be for MIMO antennas. Proc Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, p.1579-1580.
[110]Mi D, Dianati M, Zhang L, et al., 2017. Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Trans Wirel Commun, 65(9):3734-3749.
[111]Mitra R, Bhatia V, 2017. Precoded Chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NONMA-VLC. IEEE Trans Commun, 65(11):4845-4856.
[112]Moltafet M, Yamchi NM, Javan MR, et al., 2018a. Comparison study between PD-NOMA and SCMA. IEEE Trans Veh Technol, 67(2):1830-1834.
[113]Nguyen NP, Dobre OA, Nguyen LD, et al., 2019. Secure downlink massive MIMO NOMA network in the presence of a multiple-antenna eavesdropper. Proc Int Conf on Communications, p.1-6.
[114]Nguyen TS, Duy HHK, Nguyen H, et al., 2018. Throughput analysis in relaying cooperative systems considering time-switching with NOMA. Proc 41st Int Conf on Telecommunications and Signal Processing, p.1-4.
[115]Nguyen VD, Tuan HD, Duong TQ, et al., 2017a. Joint fractional time allocation and beamforming for downlink multiuser MISO systems. IEEE Commun Lett, 21(12):2650-2653.
[116]Nguyen VD, Tuan HD, Duong TQ, et al., 2017b. Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J Sel Areas Commun, 35(12):2681-2695.
[117]Nomikos N, Michailidis ET, Trakadas P, et al., 2019. Flex-NOMA: exploiting buffer-aided relay selection for massive connectivity in the 5G uplink. IEEE Access, 7:88743-88755.
[118]Palattella MR, Dohler M, Grieco A, 2016. Internet of Things in the 5G era: enablers, architecture, and business models. IEEE J Sel Areas Commun, 34(3):510-527.
[119]Peng JJ, Chen W, Ai B, et al., 2017. Joint optimization of constellation with mapping matrix for SCMA codebook design. IEEE Signal Process Lett, 24(3):264-268.
[120]Qi Q, Chen XM, 2019. Wireless powered massive access for cellular Internet of Things with imperfect SIC and nonlinear EH. IEEE Int Things J, 6(2):3110-3120.
[121]Sedaghat MA, Müller RR, 2018. On user pairing in uplink NOMA. IEEE Trans Wirel Commun, 17(5):3474-3486.
[122]Senel K, Larsson EG, 2018. Grant-free massive MTC-enabled massive MIMO: a compressive sensing approach. IEEE Trans Commun, 66(12):6164-6175.
[123]Seo J, Sung Y, 2018. Beam design and user scheduling for nonorthogonal multiple access with multiple antenna based on Pareto optimality. IEEE Trans Signal Process, 66(11):2876-2891.
[124]Shao XD, Chen XM, Zhong CJ, et al., 2019. A unified design of massive access for cellular Internet of Things. IEEE Int Things J, 6(2):3934-3947.
[125]Shi Z, Yang GH, Fu YR, et al., 2018. Performance analysis of MIMO-NOMA systems with randomly deployed users. Proc Global Communications Conf, p.1-7.
[126]Shin W, Vaezi M, Lee B, et al., 2017a. Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun Lett, 21(1):84-87.
[127]Shin W, Vaezi M, Lee B, et al., 2017b. Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun Mag, 55(10):176-183.
[128]Shin W, Yang H, Vaezi M, et al., 2017c. Relay-aided NOMA in uplink cellular networks. IEEE Signal Process Lett, 24(12):1842-1846.
[129]Sohrabi F, Yu W, 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 10(3):501-513.
[130]Sun Q, Han SF, Chin-Lin I, et al., 2015. On the ergodic capacity of MIMO NOMA systems. IEEE Wirel Commun Lett, 4(4):405-408.
[131]Sun YS, Ding ZG, Dai XC, et al., 2018. A feasibility study on network NOMA. IEEE Trans Commun, 66(9):4303-4317.
[132]Tian MX, Zhang Q, Zhao S, et al., 2018. Robust beamforming in downlink MIMO NOMA networks using cutting-set method. IEEE Commun Lett, 22(3):574-577.
[133]Timotheou S, Krikidis I, 2015. Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process Lett, 22(10):1647-1651.
[134]Tong D, Ding YH, Liu Y, et al., 2019. A MIMO-NOMA framework with complex-valued power coefficients. IEEE Trans Veh Technol, 68(3):2244-2259.
[135]TR G, 2015. Technical Specification Group GSM/EDGE Radio Access Network; Cellular System Support for Ultra-low Complexity and Low Throughput Internet of Things (CIoT) TR 45.820. 3rd Generation Partnership Project, 3GPP.
[136]Tsai YR, Wei HA, 2018. Quality-balanced user clustering schemes for non-orthogonal multiple access systems. IEEE Commun Lett, 22(1):113-116.
[137]Vaezi M, Schober R, Ding ZG, et al., 2019. Non-orthogonal multiple access: common myths and critical questions. IEEE Wirel Commun, 26(5):174-180.
[138]Varshney LR, 2008. Transporting information and energy simultaneously. Proc Int Symp on Information Theory, p.1612-1616.
[139]Wan D, Chen D, Song B, et al., 2018. From IoT to 5G I-IoT: te next generation IoT-based intelligent algorithms and 5G technologies. IEEE Commun Mag, 56(10):114-120.
[140]Wan DH, Wen MW, Ji F, et al., 2018. Cooperative NOMA systems with partial channel state information over Nakagami-m fading channels. IEEE Trans Commun, 66(3):947-958.
[141]Wang BC, Dai LL, Zhang Y, et al., 2016. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA. IEEE Commun Lett, 20(11):2320-2323.
[142]Wang BC, Dai LL, Wang ZC, et al., 2017. Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J Sel Areas Commun, 35(10):2370-2382.
[143]Wang CS, Wang Y, Wang W, et al., 2017. Electromechanical coupling based influence of structural error on radiation and scattering performance of array antennas. Electron Lett, 53(14):904-906.
[144]Wang CS, Wang Y, Zhou JZ, et al., 2018. Compensation method for distorted planar array antennas based on structural-electromagnetic coupling and fast Fourier transform. IET Microw Anten Propag, 12(6):954-962.
[145]Wang H, Zhang ZY, Chen XM, 2017. Resource allocation for downlink joint space-time and power domain non-orthogonal multiple access. Proc 9th Int Conf on Wireless Communications and Signal Processing, p.1-6.
[146]Wang H, Zhang RB, Song RF, et al., 2018. A novel power minimization precoding scheme for MIMO-NOMA uplink systems. IEEE Commun Lett, 22(5):1106-1109.
[147]Wang JH, Peng Q, Huang YM, et al., 2017. Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process Lett, 24(9):1323-1327.
[148]Wang XS, Wang JT, He LZ, et al., 2018. Outage analysis for downlink NOMA with statistical channel state information. IEEE Wirel Commun Lett, 7(2):142-145.
[149]Wang XY, Jia M, Guo Q, et al., 2019. Full-duplex relaying cognitive radio network with cooperative nonorthogonal multiple access. IEEE Syst J, 13(4):3897-3908.
[150]Wei C, Liu HP, Zhang ZC, et al., 2017. Approximate message passing-based joint user activity and data detection for NOMA. IEEE Commun Lett, 21(3):640-643.
[151]Wei F, Chen W, 2017. Low complexity iterative receiver design for sparse code multiple access. IEEE Trans Commun, 65(2):621-634.
[152]Wei ZQ, Ng DWK, Yuan JH, 2016a. Power-efficient resource allocation for MC-NOMA with statistical channel state information. Proc Global Communications Conf, p.1-7.
[153]Wei ZQ, Yuan JH, Ng DWK, et al., 2016b. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun, 14(4):17-25.
[154]Wei ZQ, Ng DWK, Yuan JH, et al., 2017. Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Trans Commun, 65(9):3944-3961.
[155]Wu QQ, Li GY, Chen W, et al., 2017. An overview of sustainable green 5G networks. IEEE Wirel Commun, 24(4):72-80.
[156]Wu W, Yin XJ, Deng P, et al., 2019. Transceiver design for downlink SWIPT NOMA systems with cooperative full-duplex relaying. IEEE Access, 7:33464-33472.
[157]Wu YN, Chen XM, 2016. Robust beamforming and power splitting for secrecy wireless information and power transfer in cognitive relay networks. IEEE Commun Lett, 20(6):1152-1155.
[158]Xi W, Zhou H, 2016. Enhanced CSI feedback scheme for non-orthogonal multiple access. Proc Wireless Days, p.1-3.
[159]Xia B, Wang JL, Xiao KX, et al., 2018. Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Trans Veh Technol, 67(7):6711-6715.
[160]Xiao L, Li YD, Dai CH, et al., 2018. Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Trans Veh Technol, 67(4):3377-3389.
[161]Xiao Y, Hao L, Ma Z, et al., 2018. Forwarding strategy selection in dual-hop NOMA relaying systems. IEEE Commun Lett, 22(8):1644-1647.
[162]Xiao ZY, Zhu LP, Choi J, et al., 2018. Joint power allocation and beamforming for non-orthogonal multiple access (NOMA) in 5G millimeter wave communications. IEEE Trans Wirel Commun, 17(5):2961-2974.
[163]Xiao ZY, Zhu LP, Gao Z, et al., 2019. User fairness non-orthogonal multiple access (NOMA) for millimeter-wave communications with analog beamforming. IEEE Trans Wirel Commun, 18(7):3411-3423.
[164]Xu L, Zhou Y, Wang P, et al., 2018. Max-min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Trans Commun, 66(11):5804-5813.
[165]Xu LD, He W, Li SC, 2014. Internet of Things in industries: a survey. IEEE Trans Ind Inform, 10(4):2233-2243.
[166]Xu P, Cumanan K, 2017. Optimal power allocation scheme for non-orthogonal multiple access with α-fairness. IEEE J Sel Areas Commun, 35(10):2357-2369.
[167]Xu YQ, Shen C, Ding ZH, et al., 2017. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems. IEEE Trans Signal Process, 65(18):4874-4886.
[168]Xue C, Zhang Q, Li Q, et al., 2017. Joint power allocation and relay beamforming in nonorthogonal multiple access amplify-and-forward relay networks. IEEE Trans Veh Technol, 66(8):7558-7562.
[169]Yalcin AZ, Yuksel M, Bahceci I, 2019. Downlink MU-MIMO with QoS aware transmission: precoder design and performance analysis. IEEE Trans Wirel Commun, 18(2):969-982.
[170]Yang N, Wang LE, Geraci G, et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 53(4):20-27.
[171]Yang Q, Wang HM, Ng DWK, et al., 2017. NOMA in downlink SDMA with limited feedback: performance analysis and optimization. IEEE J Sel Areas Commun, 35(10):2281-2294.
[172]Yang Z, Ding ZG, Fan PZ, et al., 2016. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans Wirel Commun, 15(11):7244-7257.
[173]Yang ZH, Xu W, Pan CH, et al., 2017. On the optimality of power allocation for NOMA downlink with individual QoS constraints. IEEE Commun Lett, 21(7):1649-1652.
[174]Yang ZH, Pan CH, Xu W, et al., 2018. Compressive sensing-based user clustering for downlink NOMA systems with decoding power. IEEE Signal Process Lett, 25(5):660-664.
[175]Yu YH, Chen H, Li YH, et al., 2017a. Antenna selection in MIMO cognitive radio-inspired NOMA systems. IEEE Commun Lett, 21(12):2658-2661.
[176]Yu YH, Chen H, Li YH, et al., 2017b. Antenna selection for MIMO-NOMA networks. Proc Int Conf on Communications, p.1-6.
[177]Yue XW, Liu YW, Kang SL, et al., 2018a. Exploiting full/half-duplex user relaying in NOMA systems. IEEE Trans Commun, 66(2):560-575.
[178]Yue XW, Liu YW, Kang SL, et al., 2018b. Spatially random relay selection for full/half-duplex cooperative NOMA networks. IEEE Trans Commun, 66(8):3294-3308.
[179]Yuksel M, Erkip E, 2007. Multiple-antenna cooperative wireless systems: a diversity-multiplexing tradeoff perspective. IEEE Trans Inform Theory, 53(10):3371-3393.
[180]Zanella A, Bui N, Castellani A, 2014. Internet of Things for smart cities. IEEE Internet Things J, 1(1):22-32.
[181]Zaw CW, Tun YK, Hong CS, 2017. User clustering based on correlation in 5G using semidefinite programming. Proc 19th Asia-Pacific Network Operations and Management Symp, p.342-345.
[182]Zeng M, Yadav A, Dobre OA, et al., 2017. Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J Sel Areas Commun, 35(10):2413-2424.
[183]Zeng M, Yadav A, Dobre OA, et al., 2018. Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster. IEEE Access, 6:5170-5181.
[184]Zeng M, Hao W, Dobre OA, et al., 2019. Energy-efficient power allocation in uplink mmwave massive MIMO with NOMA. IEEE Trans Veh Technol, 68(3):3000-3004.
[185]Zhang D, Zhu ZY, Xu C, et al., 2017. Capacity analysis of NOMA with mmwave massive MIMO systems. IEEE J Sel Areas Commun, 35(7):1606-1618.
[186]Zhang HJ, Fang F, Cheng JL, et al., 2018. Energy-efficient resource allocation in NOMA heterogeneous networks. IEEE Wirel Commun, 25(2):48-53.
[187]Zhang J, Andrews JG, 2010. Adaptive spatial intercell interference cancellation in multicell wireless networks. IEEE J Sel Areas Commun, 28(9):1455-1468.
[188]Zhang L, Liu JQ, Xiao M, et al., 2017. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J Sel Areas Commun, 35(10):2398-2412.
[189]Zhang NB, Wang J, Kan GX, et al., 2016. Uplink nonorthogonal multiple access in 5G systems. IEEE Commun Lett, 20(3):458-461.
[190]Zhang Q, Li QZ, Qin JY, 2016. Robust beamforming for nonorthogonal multiple-access systems in MISO channels. IEEE Trans Veh Technol, 65(12):10231-10236.
[191]Zhang SQ, Wu QQ, Xu SG, et al., 2017. Fundamental green tradeoffs: progresses, challenges, and impacts on 5G networks. IEEE Commun Surv Tutor, 19(1):33-56.
[192]Zhang XK, Gao Q, Gong C, et al., 2017. User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun Lett, 21(4):777-780.
[193]Zhang Y, Yang Q, Zheng TX, et al., 2016a. Energy efficiency optimization in cognitive radio inspired non-orthogonal multiple access. Proc 27th Annual Int Symp on Personal, Indoor, and Mobile Radio Communications, p.1-6.
[194]Zhang Y, Wang HM, Yang Q, et al., 2016b. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun Lett, 20(5):930-933.
[195]Zheng HY, Hou SJ, Li H, et al., 2018. Power allocation and user clustering for uplink MC-NOMA in D2D underlaid cellular networks. IEEE Wirel Commun Lett, 7(6):1030-1033.
[196]Zhong CJ, Zhang ZY, 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett, 20(12):2478-2481.
[197]Zhou FH, Chu Z, Sun HJ, et al., 2018a. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT. IEEE J Sel Areas Commun, 36(4):918-931.
[198]Zhou FH, Wu YP, Liang YC, et al., 2018b. State of the art, taxonomy, and open issues on cognitive radio networks with NOMA. IEEE Wirel Commun, 25(2):100-108.
[199]Zhou Y, Wong VWS, Schober R, 2018. Dynamic decode-and-forward based cooperative NOMA with spatially random users. IEEE Trans Wirel Commun, 17(5):3340-3356.
[200]Zhu JY, Wang JH, Huang YM, et al., 2017. On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J Sel Areas Commun, 35(12):2744-2757.
[201]Zhu LF, Zhao HB, Liang D, et al., 2015. Mutual coupling research of multi-antenna in dual-channel balise. Proc 18th Int Conf on Intelligent Transportation Systems, p.2200-2204.
[202]Zhu LP, Zhang J, Xiao ZY, et al., 2018. Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wirel Commun Lett, 8(2):328-331.
Open peer comments: Debate/Discuss/Question/Opinion
<1>