Full Text:   <715>

Summary:  <144>

CLC number: TN92; TN722

On-line Access: 2020-02-27

Received: 2019-09-02

Revision Accepted: 2019-12-25

Crosschecked: 2020-01-27

Cited: 0

Clicked: 670

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin Liu

https://orcid.org/0000-0002-9523-9094

Wen-hua Chen

https://orcid.org/0000-0002-9542-8709

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.1 P.72-96

http://doi.org/10.1631/FITEE.1900467


Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review


Author(s):  Xin Liu, Guan-sheng Lv, De-han Wang, Wen-hua Chen, Fadhel M. Ghannouchi

Affiliation(s):  Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   chenwh@tsinghua.edu.cn

Key Words:  Energy-efficient, Linearization, Massive multiple input multiple output (mMIMO), Monolithic microwave integrated circuit (MMIC), Power amplifier


Xin Liu, Guan-sheng Lv, De-han Wang, Wen-hua Chen, Fadhel M. Ghannouchi. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 72-96.

@article{title="Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review",
author="Xin Liu, Guan-sheng Lv, De-han Wang, Wen-hua Chen, Fadhel M. Ghannouchi",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="72-96",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900467"
}

%0 Journal Article
%T Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review
%A Xin Liu
%A Guan-sheng Lv
%A De-han Wang
%A Wen-hua Chen
%A Fadhel M. Ghannouchi
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 72-96
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900467

TY - JOUR
T1 - Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review
A1 - Xin Liu
A1 - Guan-sheng Lv
A1 - De-han Wang
A1 - Wen-hua Chen
A1 - Fadhel M. Ghannouchi
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 72
EP - 96
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900467


Abstract: 
Highly efficient power amplifiers (PAs) and associated linearization techniques have been developed to accommodate the explosive growth in the data transmission rate and application of massive multiple input multiple output (mMIMO) systems. In this paper, energy-efficient integrated Doherty PA monolithic microwave integrated circuits (MMICs) and linearization techniques are reviewed for both the sub-6 GHz and millimeter-wave (mm-Wave) fifth-generation (5G) mMIMO systems; different semiconductor processes and architectures are compared and analyzed. Since the 5G protocols have not yet been finalized and PA specifications for mMIMO are still under consideration, it is worth investigating novel design methods to further improve their efficiency and linearity performance. Digital predistortion techniques need to evolve to be adapted in mMIMO systems, and some creative linearity enhancement techniques are needed to simultaneously improve the compensation accuracy and reduce the power consumption.

面向大规模MIMO系统的高效功率放大器及其线性化技术综述

刘昕1,吕关胜1,王德涵1,陈文华1,Fadhel M. GHANNOUCHI1,2
1清华大学电子工程系,中国北京市,100084
2卡尔加里大学电气与计算机工程系,加拿大艾伯塔省卡尔加里市,T2N1N4

摘要:为适应数据传输速率的爆炸性增长以及大规模多输入多输出(mMIMO)技术的应用,业界开发了高效率功率放大器(PA)和相关线性化技术。本文根据5G系统的两个核心频段—sub-6 GHz和毫米波(mmWave)—的特点,对高效率集成化的Doherty功放单片微波集成电路(MMIC)和线性化技术进行了综述,比较和分析了不同半导体工艺和架构下的高效功放设计思路。由于5G协议尚未最终确定,大规模MIMO系统中的功放规范仍在考虑中,有必要研究新的设计方法以进一步提高其效率和线性性能。此外,数字预失真线性化技术需要发展,以适应大规模MIMO系统,并且需要一些创新的线性增强技术来同时提高补偿精度和降低功耗。

关键词:高效节能;线性化;大规模多输入多输出(mMIMO);单片微波集成电路(MMIC);功率放大器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdelaziz M, Anttila L, Valkama M, 2017. Reduced- complexity digital predistortion for massive MIMO. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.6478-6482.

[2]Abdelaziz M, Anttila L, Brihuega A, et al., 2018. Digital predistortion for hybrid MIMO transmitters. IEEE J Sel Top Signal Process, 12(3):445-454.

[3]Abdelhafiz A, Behjat L, Ghannouchi FM, et al., 2016. A high-performance complexity reduced behavioral model and digital predistorter for MIMO systems with crosstalk. IEEE Trans Commun, 64(5):1996-2004.

[4]Agah A, Hanafi B, Dabag H, et al., 2012. A 45GHz Doherty power amplifier with 23% PAE and 18dBm output power, in 45nm SOI CMOS. Proc IEEE/MTT-S Int Microwave Symp Digest, p.1-3.

[5]Agah A, Dabag HT, Hanafi B, et al., 2013. Active millimeter- wave phase-shift Doherty power amplifier in 45-nm SOI CMOS. IEEE J Sol-State Circ, 48(10):2338-2350.

[6]Ali SN, Agarwal P, Mirabbasi S, et al., 2017. A 42-46.4% PAE continuous class-F power amplifier with Cgd neutralization at 26-34 GHz in 65 nm CMOS for 5G applications. Proc IEEE Radio Frequency Integrated Circuits Symp, p.212-215.

[7]Ali SN, Agarwal P, Renaud L, et al., 2018. A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate–drain neutralization for 28-GHz 5G radios. IEEE Trans Microw Theory Techn, 66(5):2231-2245.

[8]Amin S, Landin PN, Händel P, et al., 2014. Behavioral modeling and linearization of crosstalk and memory effects in RF MIMO transmitters. IEEE Trans Microw Theory Techn, 62(4):810-823.

[9]Ayad M, Byk E, Neveux G, et al., 2017. Single and dual input packaged 5.5-6.5GHz, 20W, quasi-MMIC GaN-HEMT Doherty power amplifier. Proc IEEE MTT-S Int Microwave Symp, p.114-117.

[10]Bai TY, Heath RW, 2014. Asymptotic coverage and rate in massive MIMO networks. Proc IEEE Global Conf on Signal and Information Processing, p.602-606.

[11]Barradas FM, Cunha TR, Pedro JC, 2017. Digital predistortion of RF PAs for MIMO transmitters based on the equivalent load. Proc Integrated Nonlinear Microwave and Millimetre-Wave Circuits Workshop, p.1-4.

[12]Bassam SA, Helaoui M, Ghannouchi FM, 2009. Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters. IEEE Trans Microw Theory Techn, 57(5):1119-1128.

[13]Camarchia V, Rubio JJM, Pirola M, et al., 2013a. High- efficiency 7 GHz Doherty GaN MMIC power amplifiers for microwave backhaul radio links. IEEE Trans Electron Dev, 60(10):3592-3595.

[14]Camarchia V, Fang J, Rubio JM, et al., 2013b. 7 GHz MMIC GaN Doherty power amplifier with 47% efficiency at 7 dB output back-off. IEEE Microw Wirel Compon Lett, 23(1):34-36.

[15]Campbell CF, Tran K, Kao MY, et al., 2012. A K-band 5W Doherty amplifier MMIC utilizing 0.15µm GaN on SiC HEMT technology. Proc IEEE Compound Semiconductor Integrated Circuit Symp, p.1-4.

[16]Chen D, Zhao CX, Jiang ZD, et al., 2018. A V-band Doherty power amplifier based on voltage combination and balance compensation Marchand balun. IEEE Access, 6:10131-10138.

[17]Chen SC, Wang GF, Cheng ZQ, et al., 2017. Adaptively biased 60-GHz Doherty power amplifier in 65-nm CMOS. IEEE Microw Wirel Compon Lett, 27(3):296-298.

[18]Chen XF, Chen WH, Ghannouchi FM, et al., 2016. A broadband Doherty power amplifier based on continuous-mode technology. IEEE Trans Microw Theory Techn, 64(12): 4505-4517.

[19]Choi K, Kim M, Kim H, et al., 2010. A highly linear two-stage amplifier integrated circuit using InGaP/GaAs HBT. IEEE J Sol-State Circ, 45(10):2038-2043.

[20]Choi S, Jeong ER, 2012. Digital predistortion based on combined feedback in MIMO transmitters. IEEE Commun Lett, 16(10):1572-1575.

[21]Curtis J, Pham AV, Chirala M, et al., 2013. A Ka-band Doherty power amplifier with 25.1 dBm output power 38% peak PAE and 27% back-off PAE. Proc IEEE Radio Frequency Integrated Circuits Symp, p.349-352.

[22]François B, Reynaert P, 2015. Highly linear fully integrated wideband RF PA for LTE-Advanced in 180-nm SOI. IEEE Trans Microw Theory Techn, 63(2):649-658.

[23]Gao X, Edfors O, Rusek F, et al., 2015. Massive MIMO performance evaluation based on measured propagation data. IEEE Trans Wirel Commun, 14(7):3899-3911.

[24]Gao XY, Dai LL, Han SF, et al., 2016. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 34(4):998-1009.

[25]Gao XY, Dai LL, Sayeed AM, 2018. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 56(4):211-217.

[26]Ghannouchi FM, Hammi O, 2009. Behavioral modeling and predistortion. IEEE Microw Mag, 10(7):52-64.

[27]Giofre R, Colantonio P, 2017. A high efficiency and low distortion 6 W GaN MMIC Doherty amplifier for 7 GHz radio links. IEEE Microw Wirel Compon Lett, 27(1):70- 72.

[28]Giofre R, Piazzon L, Colantonio P, et al., 2015. GaN-MMIC Doherty power amplifier with integrated reconfigurable input network for microwave backhaul applications. Proc IEEE MTT-S Int Microwave Symp, p.1-3.

[29]Giofre R, Colantonio P, Giannini F, 2016. A design approach for two stages GaN MMIC PAs with high efficiency and excellent linearity. IEEE Microw Wirel Compon Lett, 26(1): 46-48.

[30]Giofre R, del Gaudio A, Limiti E, 2019. A 28 GHz MMIC Doherty power amplifier in GaN on Si technology for 5G applications. Proc IEEE MTT-S Int Microwave Symp, p.611-613.

[31]Guo RN, Tao HQ, Zhang B, 2018. A 26 GHz Doherty power amplifier and a fully integrated 2×2 PA in 0.15μm GaN HEMT process for heterogeneous integration and 5G. Proc IEEE MTT-S Int Wireless Symp, p.1-4.

[32]Gustafsson D, Cahuana JC, Kuylenstierna D, et al., 2013. A wideband and compact GaN MMIC Doherty amplifier for microwave link applications. IEEE Trans Microw Theory Techn, 61(2):922-930.

[33]Gustafsson D, Cahuana JC, Kuylenstierna D, et al., 2014. A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Techn, 62(12):3006-3016.

[34]Gustafsson D, Andersson K, Leidenhed A, et al., 2016. A packaged hybrid Doherty PA for microwave links. Proc 46th European Microwave Conf, p.1437-1440.

[35]Han SF, Chih-Lin I, Xu ZK, et al., 2015. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 53(1):186-194.

[36]Harris P, Malkowsky S, Vieira J, et al., 2017. Performance characterization of a real-time massive MIMO system with LOS mobile channels. IEEE J Sel Areas Commun, 35(6):1244-1253.

[37]Hausmair K, Gustafsson S, Sánchez-Pérez C, et al., 2017. Prediction of nonlinear distortion in wideband active antenna arrays. IEEE Trans Microw Theory Techn, 65(11): 4550-4563.

[38]Hausmair K, Landin PN, Gustavsson U, et al., 2018. Digital predistortion for multi-antenna transmitters affected by antenna crosstalk. IEEE Trans Microw Theory Techn, 66(3):1524-1535.

[39]Hausmair L, Gustavsson U, Fager C, et al., 2018. Modeling and linearization of multi-antenna transmitters using over-the-air measurements. Proc IEEE Int Symp on Circuits and Systems, p.1-4.

[40]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.

[41]Hu HJ, Gao H, Li ZF, et al., 2017. A sub 6GHz massive MIMO system for 5G new radio. Proc IEEE 85th Vehicular Technology Conf, p.1-5.

[42]Hu S, Wang F, Wang H, 2017. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. Proc IEEE Int Solid-State Circuits Conf, p.32-33.

[43]Huang CY, He SB, You F, 2018. Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations. IEEE Access, 6:2531-2540.

[44]Indirayanti P, Reynaert P, 2017. A 32 GHz 20 dBm-PSAT transformer-based Doherty power amplifier for multi- Gb/s 5G applications in 28 nm bulk CMOS. Proc IEEE Radio Frequency Integrated Circuits Symp, p.45-48.

[45]Ishikawa R, Takayama Y, Honjo K, 2018. Fully integrated asymmetric Doherty amplifier based on two-power-level impedance optimization. Proc 13th European Microwave Integrated Circuits Conf, p.253-256.

[46]Jee S, Lee J, Son J, et al., 2015. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base- station. IEEE Trans Microw Theory Techn, 63(9):2802- 2810.

[47]Jin SS, Park B, Moon K, et al., 2013. Linearization of CMOS cascode power amplifiers through adaptive bias control. IEEE Trans Microw Theory Techn, 61(12):4534-4543.

[48]Joo T, Koo B, Hong S, 2013. A WLAN RF CMOS PA with large-signal MGTR method. IEEE Trans Microw Theory Techn, 61(3):1272-1279.

[49]Kang J, Yoon J, Min K, et al., 2006. A highly linear and efficient differential CMOS power amplifier with harmonic control. IEEE J Sol-State Circ, 41(6):1314-1322.

[50]Kao KY, Hsu YC, Chen KW, et al., 2013. Phase-delay cold- FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers. IEEE Trans Microw Theory Techn, 61(12):4505-4519.

[51]Kaymaksut E, Zhao DX, Reynaert P, 2015. Transformer-based Doherty power amplifiers for mm-Wave applications in 40-nm CMOS. IEEE Trans Microw Theory Techn, 63(4): 1186-1192.

[52]Kim CH, Jee S, Jo GD, et al., 2014. A 2.14-GHz GaN MMIC Doherty power amplifier for small-cell base stations. IEEE Microw Wirel Compon Lett, 24(4):263-265.

[53]Kulkarni S, Reynaert P, 2014. 14.3 A push-pull mm-Wave power amplifier with <0.8° AM-PM distortion in 40nm CMOS. Proc IEEE Int Solid-State Circuits Conf Digest of Technical Papers, p.252-253.

[54]Kulkarni S, Reynaert P, 2016. A 60-GHz power amplifier with AM–PM distortion cancellation in 40-nm CMOS. IEEE Trans Microw Theory Techn, 64(7):2284-2291.

[55]Larsson EG, Edfors O, Tufvesson F, et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 52(2):186-195.

[56]Lee H, Lim W, Bae J, et al., 2017a. Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network. IEEE Trans Microw Theory Techn, 65(12):5203-5211.

[57]Lee H, Lim W, Lee W, et al., 2017b. Compact load network for GaN-HEMT Doherty power amplifier IC using left- handed and right-handed transmission lines. IEEE Microw Wirel Compon Lett, 27(3):293-295.

[58]Lee J, Lee DH, Hong S, 2014. A Doherty power amplifier with a GaN MMIC for femtocell base stations. IEEE Microw Wirel Compon Lett, 24(3):194-196.

[59]Lee S, Kim M, Sirl Y, et al., 2015. Digital predistortion for power amplifiers in hybrid MIMO systems with antenna subarrays. Proc IEEE 81st Vehicular Technology Conf, p.1-5.

[60]Li HM, Li G, Zhang YK, et al., 2018. Forward modeling assisted digital predistortion method for hybrid beamforming transmitters with a single PA feedback. Proc IEEE Asia Pacific Conf on Circuits and Systems, p.179- 182.

[61]Li SH, Hsu SSH, Zhang J, et al., 2018. Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications. IEEE Trans Microw Theory Techn, 66(12):5676-5684.

[62]Li TW, Wang H, 2018. A continuous-mode 23.5-41GHz hybrid class-F/F-l power amplifier with 46% peak PAE for 5G massive MIMO applications. Proc IEEE Radio Frequency Integrated Circuits Symp, p.220-230.

[63]Liu B, Mao MD, Boon CC, et al., 2018. A fully integrated class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application. IEEE Microw Wirel Compon Lett, 28(5):434-436.

[64]Liu L, Chen WH, Ma LY, et al., 2016. Single-PA-feedback digital predistortion for beamforming MIMO transmitter. Proc IEEE Int Conf on Microwave and Millimeter Wave Technology, p.573-575.

[65]Liu X, Zhang Q, Chen WH, et al., 2018. Beam-oriented digital predistortion for 5G massive MIMO hybrid beamforming transmitters. IEEE Trans Microw Theory Techn, 66(7): 3419-3432.

[66]Liu X, Chen WH, Chen L, et al., 2019a. Beam-oriented digital predistortion for hybrid beamforming array utilizing over-the-air diversity feedbacks. Proc IEEE MTT-S Int Microwave Symp, p.987-990.

[67]Liu X, Chen WH, Chen L, et al., 2019b. Linearization for hybrid beamforming array utilizing embedded over-the- air diversity feedbacks. IEEE Trans Microw Theory Techn, 67(12):5235-5248.

[68]Lu C, Pham AVH, Shaw M, et al., 2007. Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation. IEEE Trans Microw Theory Techn, 55(11):2320-2328.

[69]Luo Q, Yu C, Zhu XW, 2018a. A modified digital predistortion method for phased array transmitters with multi-channel time delay. Proc IEEE MTT-S Int Microwave Workshop Series on 5G Hardware and System Technologies, p.1-3.

[70]Luo Q, Yu C, Zhu XW, 2018b. A dual-input canonical piecewise-linear function-based model for digital predistortion of multi-antenna transmitters. Proc IEEE/ MTT-S Int Microwave Symp, p.559-562.

[71]Lv GS, Chen WH, Chen XF, et al., 2018a. An energy-efficient Ka/Q dual-band power amplifier MMIC in 0.1-μm GaAs process. IEEE Microw Wirel Compon Lett, 28(6):530-532.

[72]Lv GS, Chen WH, Feng ZH, 2018b. A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications. Proc IEEE/MTT-S Int Microwave Symp, p.808-811.

[73]Lv GS, Chen WH, Chen XF, et al., 2019a. A compact Ka/Q dual-band GaAs MMIC Doherty power amplifier with simplified offset lines for 5G applications. IEEE Trans Microw Theory Techn, 67(7):3110-3121.

[74]Lv GS, Chen WH, Liu X, et al., 2019b. A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application. IEEE Access, 7:71665-71674.

[75]Lv GS, Chen WH, Liu X, et al., 2019c. A dual-band GaN MMIC power amplifier with hybrid operating modes for 5G application. IEEE Microw Wirel Compon Lett, 29(3): 228-230.

[76]Lv GS, Chen WH, Chen L, et al., 2019d. A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application. Proc IEEE MTT-S Int Microwave Symp, p.560-563.

[77]Maroldt S, Ercoli M, 2017. 3.5-GHz ultra-compact GaN class- E integrated Doherty MMIC PA for 5G massive-MIMO base station applications. Proc 12th European Microwave Integrated Circuits Conf, p.196-199.

[78]Marzetta TL, Larsson EG, Yang H, et al., 2016. Fundamentals of Massive MIMO. Cambridge University Press, Cambridge, UK.

[79]Mollen C, Larsson EG, Gustavsson U, et al., 2018. Out-of- band radiation from large antenna arrays. IEEE Commun Mag, 56(4):196-203.

[80]Nakatani K, Yamaguchi Y, Komatsuzaki Y, et al., 2018. A Ka-band high efficiency Doherty power amplifier MMIC using GaN-HEMT for 5G application. Proc IEEE MTT-S Int Microwave Workshop Series on 5G Hardware and System Technologies, p.1-3.

[81]Ng E, Beltagy Y, Mitran P, et al., 2018. Single-input single- output digital predistortion of power amplifier arrays in millimeter wave RF beamforming transmitters. Proc IEEE/MTT-S Int Microwave Symp, p.481-484.

[82]Ng E, Ayed AB, Mitran P, et al., 2019. Single-input single- output digital predistortion of multi-user RF beamforming arrays. Proc IEEE MTT-S Int Microwave Symp, p.472-475.

[83]Nguyen DP, Pham AV, 2016. An ultra compact watt-level Ka-band stacked-FET power amplifier. IEEE Microw Wirel Compon Lett, 26(7):516-518.

[84]Nguyen DP, Pham BL, Pham AV, 2017. A compact 29% PAE at 6 dB power back-off E-mode GaAs pHEMT MMIC Doherty power amplifier at Ka-band. Proc IEEE MTT-S Int Microwave Symp, p.1683-1686.

[85]Nguyen DP, Curtis J, Pham AV, 2018a. A Doherty amplifier with modified load modulation scheme based on load- pull data. IEEE Trans Microw Theory Techn, 66(1):227- 236.

[86]Nguyen DP, Pham T, Pham AV, 2018b. A 28-GHz symmetrical Doherty power amplifier using stacked-FET cells. IEEE Trans Microw Theory Techn, 66(6):2628-2637.

[87]Nguyen HT, Chi TY, Li SS, et al., 2018. A 62-to-68GHz linear 6Gb/s 64QAM CMOS Doherty radiator with 27.5%/ 20.1% PAE at peak/6dB-back-off output power leveraging high-efficiency multi-feed antenna-based active load modulation. Proc IEEE Int Solid-State Circuits Conf, p.402-404.

[88]Niu Y, Li Y, Jin DP, et al., 2015. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel Netw, 21(8):2657-2676.

[89]Özen M, Rostomyan N, Aufinger K, et al., 2017. Efficient millimeter wave Doherty PA design based on a low-loss combiner synthesis technique. IEEE Microw Wirel Compon Lett, 27(12):1143-1145.

[90]Park B, Jin SS, Jeong D, et al., 2016. Highly linear mm-Wave CMOS power amplifier. IEEE Trans Microw Theory Techn, 64(12):4535-4544.

[91]Park CW, Jeong ER, Kim JH, 2016. A new digital predistortion technique for analog beamforming systems. IEICI Electron Expr, 13(2):20150998.

[92]Park J, Lee C, Park C, 2017a. A quad-band CMOS linear power amplifier for EDGE applications using an anti- phase method to enhance its linearity. IEEE Trans Circ Syst I, 64(4):765-776.

[93]Park J, Lee C, Yoo J, et al., 2017b. A CMOS antiphase power amplifier with an MGTR technique for mobile applications. IEEE Trans Microw Theory Techn, 65(11):4645- 4656.

[94]Park Y, Lee J, Jee S, et al., 2015. GaN HEMT MMIC Doherty power amplifier with high gain and high PAE. IEEE Microw Wirel Compon Lett, 25(3):187-189.

[95]Pi ZY, Khan F, 2011. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 49(6): 101-107.

[96]Piazzon L, Colantonio P, Giannini F, et al., 2014. 15% bandwidth 7 GHz GaN-MMIC Doherty amplifier with enhanced auxiliary chain. Microw Opt Technol Lett, 56(2): 502-504.

[97]Probst S, Martinelli T, Seewald S, et al., 2017. Design of a linearized and efficient Doherty amplifier for C-band applications. Proc 12th European Microwave Integrated Circuits Conf, p.121-124.

[98]Quaglia R, Camarchia V, Jiang T, et al., 2014a. K-band GaAs MMIC Doherty power amplifier for microwave radio with optimized driver. IEEE Trans Microw Theory Techn, 62(11):2518-2525.

[99]Quaglia R, Camarchia V, Pirola M, et al., 2014b. Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul. IEEE Trans Microw Theory Techn, 62(11): 2700-2710.

[100]Quaglia R, Greene MD, Poulton MJ, et al., 2019. A 1.8-3.2- GHz Doherty power amplifier in quasi-MMIC technology. IEEE Microw Wirel Compon Lett, 29(5):345-347.

[101]Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.

[102]Rappaport TS, MacCartney GR, Samimi MK, et al., 2015. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun, 63(9):3029-3056.

[103]Roh W, Seol JY, Park J, et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 52(2):106-113.

[104]Rostomyan N, Ozen M, Asbeck P, 2018. 28 GHz Doherty power amplifier in CMOS SOI with 28% back-off PAE. IEEE Microw Wirel Compon Lett, 28(5):446-448.

[105]Sarkar A, Aryanfar F, Floyd BA, 2017. A 28-GHz SiGe BiCMOS PA with 32% efficiency and 23-dBm output power. IEEE J Sol-State Circ, 52(6):1680-1686.

[106]Shakib S, Park HC, Dunworth J, et al., 2016. A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE J Sol-State Circ, 51(12): 3020-3036.

[107]Suryasarman PM, Springer A, 2015. A comparative analysis of adaptive digital predistortion algorithms for multiple antenna transmitters. IEEE Trans Circ Syst I, 62(5):1412- 1420.

[108]Tervo N, Aikio J, Tuovinen T, et al., 2017. Digital predistortion of amplitude varying phased array utilising over-the- air combining. Proc IEEE MTT-S Int Microwave Symp, p.1165-1168.

[109]Tsai JH, Chang HY, Wu PS, et al., 2006. Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high- linearity medium power amplifiers. IEEE Trans Microw Theory Techn, 54(6):2487-2496.

[110]Tsai JH, Wu CH, Yang HY, et al., 2011. A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer. IEEE Microw Wirel Compon Lett, 21(12):676-678.

[111]Vaezi A, Abdipour A, Mohammadi A, et al., 2017. On the modeling and compensation of backward crosstalk in MIMO transmitters. IEEE Microw Wirel Compon Lett, 27(9):842-844.

[112]Valenta V, Davies I, Ayllon N, et al., 2018. High-gain GaN Doherty power amplifier for Ka-band satellite communications. Proc IEEE Topical Conf on RF/Microwave Power Amplifiers for Radio and Wireless Applications, p.29-31.

[113]Vigilante M, Reynaert P, 2018. A wideband class-AB power amplifier with 29-57-GHz AM–PM compensation in 0.9-V 28-nm bulk CMOS. IEEE J Sol-State Circ, 53(5): 1288-1301.

[114]Wang CZ, Vaidyanathan M, Larson LE, 2004. A capacitance- compensation technique for improved linearity in CMOS class-AB power amplifiers. IEEE J Sol-State Circ, 39(11): 1927-1937.

[115]Wang DH, Chen WH, Chen L, et al., 2019. A Ka-band highly linear power amplifier with a linearization bias circuit. Proc IEEE MTT-S Int Microwave Symp, p.320-322.

[116]Xi TZ, Huang S, Guo ST, et al., 2017. High-efficiency E-band power amplifiers and transmitter using gate capacitance linearization in a 65-nm CMOS process. IEEE Trans Circ Syst II, 64(3):234-238.

[117]Yamauchi K, Mori K, Nakayama M, et al., 1997. A microwave miniaturized linearizer using a parallel diode. Proc IEEE MTT-S Int Microwave Symp Digest, p.1199-1202.

[118]Yan H, Cabric D, 2017. Digital predistortion for hybrid precoding architecture in millimeter-wave massive MIMO systems. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3479-3483.

[119]Yao M, Sohul M, Nealy R, et al., 2018. A digital predistortion scheme exploiting degrees-of-freedom for massive MIMO systems. Proc IEEE Int Conf on Communications, p.1-5.

[120]Yoshimasu T, Akagi M, Tanba N, et al., 1998. An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications. IEEE J Sol- State Circ, 33(9):1290-1296.

[121]Yu C, Jing JX, Shao H, et al., 2019. Full-angle digital predistortion of 5G millimeter-wave massive MIMO transmitters. IEEE Trans Microw Theory Techn, 67(7):2847- 2860.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE