Full Text:   <356>

Summary:  <97>

CLC number: TN82

On-line Access: 2020-03-18

Received: 2019-09-11

Revision Accepted: 2019-12-27

Crosschecked: 2020-02-24

Cited: 0

Clicked: 549

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-yin Guo

https://orcid.org/0000-0001-6963-8617

Lu-yu Zhao

https://orcid.org/0000-0001-8981-9829

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.3 P.366-376

http://doi.org/10.1631/FITEE.1900490


Mutual coupling reduction of multiple antenna systems


Author(s):  Jia-yin Guo, Feng Liu, Guo-dong Jing, Lu-yu Zhao, Ying-zeng Yin, Guan-long Huang

Affiliation(s):  Key Laboratory of Antennas and Microwave Technologies, Xidian University, Xi’an 710071, China; more

Corresponding email(s):   lyzhao@xidian.edu.cn

Key Words:  Mutual coupling, Multiple-input multiple-output, Antenna array, Metasurface, Decoupling


Jia-yin Guo, Feng Liu, Guo-dong Jing, Lu-yu Zhao, Ying-zeng Yin, Guan-long Huang. Mutual coupling reduction of multiple antenna systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(3): 366-376.

@article{title="Mutual coupling reduction of multiple antenna systems",
author="Jia-yin Guo, Feng Liu, Guo-dong Jing, Lu-yu Zhao, Ying-zeng Yin, Guan-long Huang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="3",
pages="366-376",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900490"
}

%0 Journal Article
%T Mutual coupling reduction of multiple antenna systems
%A Jia-yin Guo
%A Feng Liu
%A Guo-dong Jing
%A Lu-yu Zhao
%A Ying-zeng Yin
%A Guan-long Huang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 3
%P 366-376
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900490

TY - JOUR
T1 - Mutual coupling reduction of multiple antenna systems
A1 - Jia-yin Guo
A1 - Feng Liu
A1 - Guo-dong Jing
A1 - Lu-yu Zhao
A1 - Ying-zeng Yin
A1 - Guan-long Huang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 3
SP - 366
EP - 376
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900490


Abstract: 
A multi-band multi-antenna system has become an important trend in the development of mobile communication systems. However, strong mutual coupling tends to occur between antenna elements with a small space, distorting array antennas’ performance. Therefore, in the multiple-input multiple-output (MIMO) antenna system, high isolation based on miniaturization of the antenna array has been pursued. We study in depth the methods of decoupling between antenna elements. Reasons for the existence of mutual coupling and advantages of mutual coupling reduction are analyzed. Then the decoupling methods proposed in recent works are compared and analyzed. Finally, we propose a metasurface consisting of double-layer short wires, which can be applied to improve the port isolation of antennas arranged along the H-plane and E-plane. Results show that the proposed metasurface has good decoupling effect on a closely placed antenna array.

多天线系统的互耦抑制

郭佳音1,刘锋1,荆国栋1,赵鲁豫1,尹应增1,黄冠龙2
1西安电子科技大学天线与微波技术重点实验室,中国西安市,710071
2深圳大学信息工程学院,广东省移动终端微波毫米波天线工程技术研究中心,中国深圳市,518060

摘要:多频带多天线系统已成为移动通信系统发展的重要趋势。但是,由于空间较小,天线单元之间往往会发生较强互耦,从而损坏阵列天线的性能。因此,在多输入多输出(MIMO)天线系统中,人们一直追求在天线阵列小型化的基础上,实现较高的隔离度。本文深入研究天线单元间的去耦方法,分析互耦原因及耦合减少的优势。然后,比较分析近期提出的解耦方法。最后,提出由双层短截线组成的超表面结构,以改善沿H面和E面排列的天线的端口隔离。结果表明,所提超表面对紧密放置的天线阵列具有良好去耦效果。

关键词:互耦;多输入多输出;天线阵列;超表面;去耦

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbari M, Ghalyon HA, Farahani M, et al., 2017. Spatially decoupling of CP antennas based on FSS for 30 GHz MIMO systems. IEEE Access, 5:6527-6537.

[2]Al-Hasan MJ, Denidni TA, Sebak AR, 2015. Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans Antenn Propag, 63(2):823-828.

[3]Amjadi SM, Sarabandi K, 2016. Mutual coupling mitigation in broadband multiple-antenna communication systems using feedforward technique. IEEE Trans Antenn Propag, 64(5):1642-1652.

[4]Browne DW, Manteghi M, Fitz MP, et al., 2006. Experiments with compact antenna arrays for MIMO radio communications. IEEE Trans Antenn Propag, 54(11):3239-3250.

[5]Chae SH, Oh Sk, Park SO, 2007. Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antenn Wirel Propag Lett, 6:122-125.

[6]Chen SC, Wang YS, Chung SJ, 2008. A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Trans Antenn Propag, 56(12): 3650-3658.

[7]Chiu CY, Cheng CH, Murch RD, et al., 2007. Reduction of mutual coupling between closely-packed antenna elements. IEEE Trans Antenn Propag, 55(6):1732-1738.

[8]Chiu CY, Xu F, Shen SP, et al., 2018. Mutual coupling reduction of rotationally symmetric multiport antennas. IEEE Trans Antenn Propag, 66(10):5013-5021.

[9]Dhevi BL, Vishvaksenan KS, Rajakani K, 2018. Isolation enhancement in dual-band microstrip antenna array using asymmetric loop resonator. IEEE Antenn Wirel Propag Lett, 17(2):238-241.

[10]Ding CF, Zhang XY, Xue CD, et al., 2018. Novel pattern- diversity-based decoupling method and its application to multielement MIMO antenna. IEEE Trans Antenn Propag, 66(10):4976-4985.

[11]Farahani M, Pourahmadazar J, Akbari M, et al., 2017. Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antenn Wirel Propag Lett, 16:2324-2327.

[12]Feng DQ, Jiang CZ, Lim GB, et al., 2013. A survey of energy- efficient wireless communications. IEEE Commun Surv Tutor, 15(1):167-178.

[13]Getu BN, Andersen JB, 2005. The MIMO cube—a compact MIMO antenna. IEEE Trans Wirel Commun, 4(3):1136- 1141.

[14]Guo JY, Liu F, Zhao LY, et al., 2019. Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane. IEEE Access, 7:100442-100452.

[15]Jafri SI, Brown AK, Shafique MF, et al., 2016. Compact reconfigurable multiple-input-multiple-output antenna for ultra wideband applications. IET Microw Antenn Propag, 10(4):413-419.

[16]Larsson EG, Edfors O, Tufvesson F, et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 52(2):186-195.

[17]Lee JY, Kim SH, Jang JH, 2015. Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans Antenn Propag, 63(9):4194-4198.

[18]Li JF, Chu QX, Li ZH, et al., 2013. Compact dual band- notched UWB MIMO antenna with high isolation. IEEE Trans Antenn Propag, 61(9):4759-4766.

[19]Li Q, Feresidis AP, Mavridou M, et al., 2015. Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles. IEEE Trans Antenn Propag, 63(3):1168-1171.

[20]Li ZY, Du ZW, Takahashi M, et al., 2012. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans Antenn Propag, 60(2):473- 481.

[21]Liang PY, Wu Q, 2018. Characteristic mode analysis of antenna mutual coupling in the near field. IEEE Trans Antenn Propag, 66(7):3757-3762.

[22]Liu F, Guo JY, Zhao LY, et al., 2018. A meta-surface decoupling method for two linear polarized antenna array in sub-6 GHz base station applications. IEEE Access, 7:2759-2768.

[23]Ouyang J, Yang F, Wang ZM, 2011. Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antenn Wirel Propag Lett, 10:310-313.

[24]Pan BC, Cui TJ, 2017. Broadband decoupling network for dual-band microstrip patch antennas. IEEE Trans Antenn Propag, 65(10):5595-5598.

[25]Soltani S, Murch RD, 2015. A compact planar printed MIMO antenna design. IEEE Trans Antenn Propag, 63(3):1140- 1149.

[26]Su SW, Lee CT, Chang FS, 2012. Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Trans Antenn Propag, 60(2):456-463.

[27]Sun HH, Ding C, Zhu H, et al., 2019. Suppression of cross- band scattering in multiband antenna arrays. IEEE Trans Antenn Propag, 67(4):2379-2389.

[28]Tang MC, Chen ZY, Wang H, et al., 2017. Mutual coupling reduction using meta-structures for wideband, dual- polarized, and high-density patch arrays. IEEE Trans Antenn Propag, 65(8):3986-3998.

[29]Wang ZY, Zhao LY, Cai YM, et al., 2018. A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system. Sci Rep, 8:3152.

[30]Wei K, Li JY, Wang L, et al., 2016. Mutual coupling reduction by novel fractal defected ground structure band-gap filter. IEEE Trans Antenn Propag, 64(10):4328-4335.

[31]Wu KL, Wei CW, Mei XD, et al., 2017. Array-antenna decoupling surface. IEEE Trans Antenn Propag, 65(12): 6728-6738.

[32]Xue CD, Zhang XY, Cao YF, et al., 2017. MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement. IEEE Trans Antenn Propag, 65(10):5162- 5170.

[33]Yang F, Rahmat-Samii Y, 2003. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antenn Propag, 51(10):2936-2946.

[34]Zhai GH, Chen ZN, Qing XM, 2016. Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms. IEEE Trans Microw Theory Technol, 64(10):3060-3067.

[35]Zhang S, Pedersen GF, 2016. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antenn Wirel Propag Lett, 15:166-169.

[36]Zhang S, Lau BK, Tan Y, et al., 2012. Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Trans Antenn Propag, 60(3):1521-1531.

[37]Zhang Y, Zhang XY, Ye LH, et al., 2016. Dual-band base station array using filtering antenna elements for mutual coupling suppression. IEEE Trans Antenn Propag, 64(8): 3423-3430.

[38]Zhao LY, Wu KL, 2014. A decoupling technique for four- element symmetric arrays with reactively loaded dummy elements. IEEE Trans Antenn Propag, 62(8):4416-4421.

[39]Zhao LY, Wu KL, 2015. A dual-band coupled resonator decoupling network for two coupled antennas. IEEE Trans Antenn Propag, 63(7):2843-2850.

[40]Zhao LY, Yeung LK, Wu KL, 2014. A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals. IEEE Trans Antenn Propag, 62(5):2767-2776.

[41]Zhao X, Yeo SP, Ong LC, 2018. Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Trans Antenn Propag, 66(9):4485-4495.

[42]Zhu YF, Chen YK, Yang SW, 2019. Decoupling and low-profile design of dual-band dual-polarized base station antennas using frequency-selective surface. IEEE Trans Antenn Propag, 67(8):5272-5281.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE