Full Text:   <2697>

Summary:  <1594>

CLC number: TP11

On-line Access: 2020-05-18

Received: 2019-11-30

Revision Accepted: 2020-03-08

Crosschecked: 2020-03-31

Cited: 0

Clicked: 5302

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yan Shao

https://orcid.org/0000-0003-2522-4951

Zhi-feng Zhao

https://orcid.org/0000-0002-5479-7890

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.5 P.796-808

http://doi.org/10.1631/FITEE.1900659


Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments


Author(s):  Yan Shao, Zhi-feng Zhao, Rong-peng Li, Yu-geng Zhou

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   shaoy@zju.edu.cn, zhaozf@zhejianglab.com, lirongpeng@zju.edu.cn, yugeng.zhou@wfjyjt.com

Key Words:  Collective intelligence, Digital pheromones, Artificial potential field, Navigation algorithm


Share this article to: More <<< Previous Article|

Yan Shao, Zhi-feng Zhao, Rong-peng Li, Yu-geng Zhou. Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 796-808.

@article{title="Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments",
author="Yan Shao, Zhi-feng Zhao, Rong-peng Li, Yu-geng Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="5",
pages="796-808",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900659"
}

%0 Journal Article
%T Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments
%A Yan Shao
%A Zhi-feng Zhao
%A Rong-peng Li
%A Yu-geng Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 5
%P 796-808
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900659

TY - JOUR
T1 - Target detection for multi-UAVs via digital pheromones and navigation algorithm in unknown environments
A1 - Yan Shao
A1 - Zhi-feng Zhao
A1 - Rong-peng Li
A1 - Yu-geng Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 5
SP - 796
EP - 808
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900659


Abstract: 
Coordinating multiple unmanned aerial vehicles (multi-UAVs) is a challenging technique in highly dynamic and sophisticated environments. Based on digital pheromones as well as current mainstream unmanned system controlling algorithms, we propose a strategy for multi-UAVs to acquire targets with limited prior knowledge. In particular, we put forward a more reasonable and effective pheromone update mechanism, by improving digital pheromone fusion algorithms for different semantic pheromones and planning individuals’ probabilistic behavioral decision-making schemes. Also, inspired by the flocking model in nature, considering the limitations of some individuals in perception and communication, we design a navigation algorithm model on top of Olfati-Saber’s algorithm for flocking control, by further replacing the pheromone scalar to a vector. Simulation results show that the proposed algorithm can yield superior performance in terms of coverage, detection and revisit efficiency, and the capability of obstacle avoidance.

基于数字信息素和领航算法的未知环境多智能体目标探测

邵燕1,赵志峰1,2,李荣鹏1,周裕庚3
1浙江大学信息与电子工程学院,中国杭州市,310027
2之江实验室,中国杭州市,311121
3浙江万丰科技开发股份有限公司,中国绍兴市,312000

摘要:在复杂且动态性强的环境中,指导多无人机系统协调运作是一项具有挑战性的技术。基于数字信息素和当前主流无人系统控制算法,提出一种有限先验知识下多无人机系统目标探测分布式算法。通过改进不同语义数字信息素的融合算法和个体行为决策方案,提出一种更合理、有效的信息素更新机制。同时,考虑到一些个体在感知和交流方面的局限性,以及受自然界蜂拥算法启发,在Olfati-Saber无人机群控制算法基础上,设计了新的领航算法模型。此外,使用矢量信息代替传统标量信息素,使无人机群具有更高探测效率。仿真结果表明,该算法在指定区域的探测覆盖率、目标获取及回访效率、避障能力等方面都有较好表现。

关键词:群体智能;数字信息素;人工势场;领航算法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alfeo AL, Cimino MGCA, de Francesco N, et al., 2018a. Design and simulation of the emergent behavior of small drones swarming for distributed target localization. J Comput Sci, 29:19-33.

[2]Alfeo AL, Cimino MGCA, Egidi S, et al., 2018b. A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage. IEEE Trans Intell Transp Syst, 19(7):2258-2267.

[3]Alfeo AL, Cimino MGCA, de Francesco N, et al., 2018c. Swarm coordination of mini-UAVs for target search using imperfect sensors. Intell Dec Technol, 12(2):149-162.

[4]Ando Y, Fukazawa Y, Masutani O, et al., 2006. Performance of pheromone model for predicting traffic congestion. Proc 5th Int Joint Conf on Autonomous Agents and Multiagent Systems, p.73-80.

[5]Cimino MGCA, Lega M, Monaco M, et al., 2019. Adaptive exploration of a UAVs swarm for distributed targets detection and tracking. Proc 8th Int Conf on Pattern Recognition Applications and Methods, p.1-8.

[6]{Dai AN, Zhao ZF, Li RP, et al., 2020. Evaluation mechanism of collective intelligence for heterogeneous agents group. IEEE Access, 8:28385-28394.

[7]Dorigo M, di Caro G, Gambardella LM, 1999. Ant algorithms for discrete optimization. Artif Life, 5(2):137-172.

[8]Eberhart R, Kennedy J, 1995. A new optimizer using particle swarm theory. Proc 6th Int Symp on Micro Machine and Human Science, p.39-43.

[9]Karaboga D, 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-tr06, Erciyes University, Turkey.

[10]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Proc Int Conf on Neural Networks, p.1942-1948.

[11]Kuyucu T, Tanev I, Shimohara K, 2015. Superadditive effect of multi-robot coordination in the exploration of unknown environments via stigmergy. Neurocomputing, 148:83-90.

[12]Liu Z, Gao XG, Fu XW, 2018. A cooperative search and coverage algorithm with controllable revisit and connectivity maintenance for multiple unmanned aerial vehicles. Sensors, 18(5):1472.

[13]Micieta B, Edl M, Krajcovic M, et al., 2018. Delegate mass for coordination and control of one-directional AGV systems: a proof-of-concept. Int J Adv Manuf Technol, 94(1-4):415-431.

[14]Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420.

[15]Reynolds CW, 1987. Flocks, herds, and schools: a distributed behavioral model. ACM SIGGRAPH Comput Graph, 21(4):25-34.

[16]Sauter JA, Matthews R, van Dyke Parunak H, et al., 2005. Performance of digital pheromones for swarming vehicle control. Proc 4th Int Joint Conf on Autonomous Agents and Multiagent Systems, p.903-910.

[17]Senanayake M, Senthooran I, Barca JC, et al., 2016. Search and tracking algorithms for swarms of robots: a survey. Robot Auton Syst, 75:422-434.

[18]Soares JM, Navarro I, Martinoli A, 2015. The Khepera IV mobile robot: performance evaluation, sensory data and software toolbox. Proc 2nd Iberian Robotics Conf, p.767-781.

[19]Soria E, Schiano F, Floreano D, 2019. The influence of limited visual sensing on the Reynolds flocking algorithm. Proc 3rd Int Conf on Robotic Computing, p.138-145.

[20]Su HS, Wang XF, Lin ZL, 2009. Flocking of multi-agents with a virtual leader. IEEE Trans Autom Contr, 54(2):293-307.

[21]Tang QR, Xu ZP, Yu FC, et al., 2019. Dynamic target searching and tracking with swarm robots based on stigmergy mechanism. Robot Auton Syst, 120:103251.

[22]van Dyke Parunak H, Brueckner S, Sauter J, 2002. Digital pheromone mechanisms for coordination of unmanned vehicles. Proc 1st Int Joint Conf on Autonomous Agents and Multiagent Systems, p.449-450.

[23]Vásárhelyi G, Virágh C, Somorjai G, et al., 2018. Optimized flocking of autonomous drones in confined environments. Sci Rob, 3(20):eaat3536.

[24]Yang F, Ji XL, Yang CW, et al., 2017. Cooperative search of UAV swarm based on improved ant colony algorithm in uncertain environment. Proc IEEE Int Conf on Unmanned Systems, p.231-236.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE