CLC number: O439
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-12-24
Cited: 0
Clicked: 5867
Citations: Bibtex RefMan EndNote GB/T7714
Ruheng Shi, Cheng Jin, Chi Liu, Lingjie Kong. Enhanced collection of scattered photons in nonlinear fluorescence microscopy by extended epi-detection with a silicon photomultiplier array[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1289-1298.
@article{title="Enhanced collection of scattered photons in nonlinear fluorescence microscopy by extended epi-detection with a silicon photomultiplier array",
author="Ruheng Shi, Cheng Jin, Chi Liu, Lingjie Kong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="10",
pages="1289-1298",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000410"
}
%0 Journal Article
%T Enhanced collection of scattered photons in nonlinear fluorescence microscopy by extended epi-detection with a silicon photomultiplier array
%A Ruheng Shi
%A Cheng Jin
%A Chi Liu
%A Lingjie Kong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1289-1298
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000410
TY - JOUR
T1 - Enhanced collection of scattered photons in nonlinear fluorescence microscopy by extended epi-detection with a silicon photomultiplier array
A1 - Ruheng Shi
A1 - Cheng Jin
A1 - Chi Liu
A1 - Lingjie Kong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1289
EP - 1298
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000410
Abstract: To maximize signal collection in nonlinear optical microscopy, non-descanned epi-detection is generally adopted for in vivo imaging. However, because of severe scattering in biological samples, most of the emitted fluorescence photons go beyond the collection angles of objectives and thus cannot be detected. Here, we propose an extended detection scheme to enhance the collection of scattered photons in nonlinear fluorescence microscopy using a silicon photomultiplier array ahead of the front apertures of objectives. We perform numerical simulations to demonstrate the enhanced fluorescence collection via extended epi-detection in the multi-photon fluorescence imaging of human skin and mouse brain through craniotomy windows and intact skulls. For example, with red fluorescence emission at a depth of 600 μm in human skin, the increased collection can be as much as about 150% with a 10×, 0.6-NA objective. We show that extended epi-detection is a generally applicable, feasible technique for use in nonlinear fluorescence microscopy to enhance signal detection.
[1]Allen CH, Hansson B, Raiche-Tanner O, et al., 2020. Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. Opt Lett, 45(8):2299-2302.
[2]Binding J, Arous JB, Léger JF, et al., 2011. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt Expr, 19(6):4833-4847.
[3]Chen JL, Voigt FF, Javadzadeh M, et al., 2016. Long-range population dynamics of anatomically defined neocortical networks. eLife, 5:e14679.
[4]Cheong WF, Prahl SA, Welch AJ, 1990. A review of the optical properties of biological tissues. IEEE J Quant Electron, 26(12):2166-2185.
[5]Combs CA, Smirnov AV, Riley JD, et al., 2007. Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J Microsc, 228(3):330-337.
[6]Denk W, Strickler JH, Webb WW, 1990. Two-photon laser scanning fluorescence microscopy. Science, 248(4951):73-76.
[7]Dvornikov A, Gratton E, 2016. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes. Biomed Opt Expr, 7(9):3747-3755.
[8]Engelbrecht CJ, Göbel W, Helmchen F, 2009. Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt Expr, 17(8):6421-6435.
[9]Holtmaat A, Bonhoeffer T, Chow DK, et al., 2009. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc, 4(8):1128-1144.
[10]Jacques SL, 2013. Optical properties of biological tissues: a review. Phys Med Biol, 58(11):R37-R61.
[11]Ji MB, Orringer DA, Freudiger CW, et al., 2013. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Trans Med, 5(201):201ra119.
[12]Jin C, Kong LJ, Dana H, et al., 2020. Advances in point spread function engineering for functional imaging of neural circuits in vivo. J Phys D Appl Phys, 53(38):383001.
[13]Kong LJ, Cui M, 2014. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Opt Expr, 22(20):23786-23794.
[14]Kong LJ, Cui M, 2015a. In vivo deep tissue imaging via iterative multiphoton adaptive compensation technique. IEEE J Sel Top Quant Electron, 22(4):40-49.
[15]Kong LJ, Cui M, 2015b. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique. Opt Expr, 23(5):6145-6150.
[16]Lichtman JW, Conchello JA, 2005. Fluorescence microscopy. Nat Methods, 2(12):910-919.
[17]Lister T, Wright PA, Chappell PH, 2012. Optical properties of human skin. J Biomed Opt, 17(9):090901.
[18]Modi MN, Daie K, Turner GC, et al., 2019. Two-photon imaging with silicon photomultipliers. Opt Expr, 27(24):35830-35841.
[19]Oheim M, Beaurepaire E, Chaigneau E, et al., 2001. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods, 111(1):29-37.
[20]Saar BG, Freudiger CW, Reichman J, et al., 2010. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009):1368-1370.
[21]Soleimanzad H, Gurden H, Pain F, 2017. Optical properties of mice skull bone in the 455- to 705-nm range. J Biomed Opt, 22(1):010503.
[22]Toublanc D, 1996. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl Opt, 35(18):3270-3274.
[23]Wang MR, Kim M, Xia F, et al., 2019. Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains. Biomed Opt Expr, 10(4):1905-1918.
[24]Wang TY, Ouzounov DG, Wu CY, et al., 2018. Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods, 15(10):789-792.
[25]Yang G, Pan F, Parkhurst CN, et al., 2010. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc, 5(2):201-208.
Open peer comments: Debate/Discuss/Question/Opinion
<1>