CLC number: O415
On-line Access: 2021-11-15
Received: 2020-11-09
Revision Accepted: 2021-01-24
Crosschecked: 2021-09-30
Cited: 0
Clicked: 5615
Citations: Bibtex RefMan EndNote GB/T7714
Bei Chen, Quan Xu, Mo Chen, Huagan Wu, Bocheng Bao. Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(11): 1517-1531.
@article{title="Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator",
author="Bei Chen, Quan Xu, Mo Chen, Huagan Wu, Bocheng Bao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="11",
pages="1517-1531",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000622"
}
%0 Journal Article
%T Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator
%A Bei Chen
%A Quan Xu
%A Mo Chen
%A Huagan Wu
%A Bocheng Bao
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 11
%P 1517-1531
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000622
TY - JOUR
T1 - Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator
A1 - Bei Chen
A1 - Quan Xu
A1 - Mo Chen
A1 - Huagan Wu
A1 - Bocheng Bao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 11
SP - 1517
EP - 1531
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000622
Abstract: extreme multistability has seized scientists’ attention due to its rich diversity of dynamical behaviors and great flexibility in engineering applications. In this paper, a four-dimensional (4D) memcapacitive oscillator is built using four linear circuit elements and one nonlinear charge-controlled memcapacitor with a cosine inverse memcapacitance. The 4D memcapacitive oscillator possesses a line equilibrium set, and its stability periodically evolves with the initial condition of the memcapacitor. The 4D memcapacitive oscillator exhibits initial-condition-switched boosting extreme multistability due to the periodically evolving stability. Complex dynamical behaviors of period doubling/halving bifurcations, chaos crisis, and initial-condition-switched coexisting attractors are revealed by bifurcation diagrams, Lyapunov exponents, and phase portraits. Thereafter, a reconstructed system is derived via integral transformation to reveal the forming mechanism of the initial-condition-switched boosting extreme multistability in the memcapacitive oscillator. Finally, an implementation circuit is designed for the reconstructed system, and Power SIMulation (PSIM) simulations are executed to confirm the validity of the numerical analysis.
[1]Akgul A, 2019. Chaotic oscillator based on fractional order memcapacitor. J Circ Syst Comput, 28(14):1950239.
[2]Bao BC, Xu Q, Bao H, et al., 2016. Extreme multistability in a memristive circuit. Electron Lett, 52(12):1008-1010.
[3]Bao BC, Jiang T, Wang GY, et al., 2017. Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonl Dynam, 89(2):1157-1171.
[4]Bao H, Wang N, Bao BC, et al., 2018. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jeck system with four line equilibria. Commun Nonl Sci Nemer Simul, 57:264-275.
[5]Bao H, Chen M, Wu HG, et al., 2020a. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Sci China Technol Sci, 63(4):603-613.
[6]Bao H, Liu WB, Ma J, et al., 2020b. Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int J Bifurc Chaos, 30(10):2030029.
[7]Cagin E, Chen DY, Siddiqui JJ, et al., 2007. Hysteretic metal-ferroelectric-semiconductor capacitors based on PZT/ ZnO heterostructures. J Phys D Appl Phys, 40(8):2430-2434.
[8]Chang H, Li YX, Chen GR, et al., 2020. Extreme multistability and complex dynamics of a memristor-based chaotic system. Int J Bifurc Chaos, 30(8):2030019.
[9]Chen M, Feng Y, Bao H, et al., 2018. State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos Sol Fract, 115:313-324.
[10]Chen M, Feng Y, Bao H, et al., 2019a. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity. Complexity, 2019:8549472.
[11]Chen M, Ren X, Wu HG, et al., 2019b. Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front Inform Technol Electron Eng, 20(12):1706-1716.
[12]Chen M, Ren X, Wu HG, et al., 2020. Interpreting initial offset boosting via reconstitution in integral domain. Chaos Sol Fract, 131:109544.
[13]Driscoll T, Kim HT, Chae BG, et al., 2009. Memory metamaterials. Science, 325(5947):1518-1521.
[14]Khorashadizadeh S, Majidi MH, 2018. Synchronization of two different chaotic systems using Legendre polynomials with applications in secure communications. Front Inform Technol Electron Eng, 19(9):1180-1190.
[15]Kingni ST, Rajagopal K, Çiçek S, et al., 2020. Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting. Front Inform Technol Electron Eng, 21(6):950-961.
[16]Lai QX, Zhang L, Li ZY, et al., 2009. Analog memory capacitor based on field-configurable ion-doped polymers. Appl Phys Lett, 95(21):213503.
[17]Li CB, Sprott JC, 2016. Variable-boostable chaotic flows. Optik, 127(22):10389-10398.
[18]Li CB, Thio WJC, Iu HHC, et al., 2018. A memristive chaotic oscillator with increasing amplitude and frequency. IEEE Access, 6:12945-12950.
[19]Liu RX, Dong RX, Qin SC, et al., 2020. A new type artificial synapse based on the organic copolymer memcapacitor. Org Electron, 81:105680.
[20]Ma XJ, Mou J, Liu J, et al., 2020. A novel simple chaotic circuit based on memristor-memcapacitor. Nonl Dynam, 100(3):2859-2876.
[21]Martinez-Rincon J, Pershin YV, 2011. Bistable nonvolatile elastic-membrane memcapacitor exhibiting a chaotic behavior. IEEE Trans Electron Dev, 58(6):1809-1812.
[22]Martinez-Rincon J, di Ventra M, Pershin YV, 2010. Solid-state memcapacitive system with negative and diverging capacitance. Phys Rev B, 81(19):195430.
[23]Najem JS, Hasan MS, Williams RS, et al., 2019. Dynamical nonlinear memory capacitance in biomimetic membranes. Nat Commun, 10:3239.
[24]Pershin YV, Ventra MD, 2011. Memory effects in complex materials and nanoscale systems. Adv Phys, 60(2):145-227.
[25]Pershin YV, Traversa FL, di Ventra M, 2015. Memcomputing with membrane memcapacitive systems. Nanotechnology, 26(22):225201.
[26]Pham VT, Akgul A, Volos C, et al., 2017. Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU-Int J Electron Commun, 78:134-140.
[27]Pisarchik AN, Feudel U, 2014. Control of multistability. Phys Rep, 540(4):167-218.
[28]Rajagopal K, Akgul A, Jafari S, et al., 2018a. A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications. Nonl Dynam, 91(2):957-974.
[29]Rajagopal K, Jafari S, Karthikeyan A, et al., 2018b. Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circ Syst Signal Process, 37(9):3702-3724.
[30]Sun JW, Han GY, Wang YF, 2020. Dynamical analysis of memcapacitor chaotic system and its image encryption application. Int J Contr Autom Syst, 18(5):1242-1249.
[31]Wang GY, Cai BZ, Jin PP, et al., 2016. Memcapacitor model and its application in a chaotic oscillator. Chin Phys B, 25(1):010503.
[32]Wang GY, Shi CB, Wang XW, et al., 2017a. Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math Probl Eng, 2017:6504969.
[33]Wang GY, Zang SC, Wang XY, et al., 2017b. Memcapacitor model and its application in chaotic oscillator with memristor. Chaos, 27(1):013110.
[34]Wang XY, Yu J, Jin CX, et al., 2019. Chaotic oscillator based on memcapacitor and meminductor. Nonl Dynam, 96(1):161-173.
[35]Wang Z, Akgul A, Pham VT, et al., 2017. Chaos-based application of a novel no-equilibrium chaotic system with coexisting attractors. Nonl Dynam, 89(3):1877-1887.
[36]Wu HG, Ye Y, Bao BC, et al., 2019a. Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system. Chaos Sol Fract, 121:178-185.
[37]Wu HG, Ye Y, Chen M, et al., 2019b. Periodically switched memristor initial boosting behaviors in memristive hypogenetic jerk system. IEEE Access, 7:145022-145029.
[38]Xu Q, Lin Y, Bao BC, et al., 2016. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Sol Fract, 83:186-200.
[39]Xu Q, Tan X, Zhang YZ, et al., 2020. Riddled attraction basin and multistability in three-element-based memristive circuit. Complexity, 2020:4624792.
[40]Yang LB, Yang QG, Chen GR, 2020. Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system. Commun Nonl Sci Numer Simul, 90:105362.
[41]Yuan F, Li YX, 2019. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor. Chaos, 29(10):101101.
[42]Yuan F, Wang GY, Shen YR, et al., 2016. Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonl Dynam, 86(1):37-50.
[43]Yuan F, Deng Y, Li YX, et al., 2019a. The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonl Dynam, 96(1):389-405.
[44]Yuan F, Li YX, Wang GY, et al., 2019b. Complex dynamics in a memcapacitor-based circuit. Entropy, 21(2):188.
[45]Zhang S, Zeng YC, Li ZJ, et al., 2018. Hidden extreme multistability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium. Int J Bifurc Chaos, 28(13):1850167.
[46]Zhang YZ, Liu Z, Wu HG, et al., 2019. Extreme multistability in memristive hyper-jerk system and stability mechanism analysis using dimensionality reduction model. Eur Phys J Spec Top, 228(10):1995-2009.
[47]Zhao L, Fan Z, Cheng SL, et al., 2020. An artificial optoelectronic synapse based on a photoelectric memcapacitor. Adv Electron Mater, 6(2):1900858.
[48]Zhou W, Wang GY, Iu HHC, et al., 2020. Complex dynamics of a non-volatile memcapacitor-aided hyperchaotic oscillator. Nonl Dynam, 100(4):3937-3957.
[49]Zhou Z, Yu DS, Wang XY, 2017. Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits. Chin Phys B, 26(12):120701.
Open peer comments: Debate/Discuss/Question/Opinion
<1>