Full Text:   <302>

Summary:  <10>

CLC number: TN92; TN43

On-line Access: 2023-01-21

Received: 2022-03-04

Revision Accepted: 2022-08-21

Crosschecked: 2023-01-21

Cited: 0

Clicked: 210

Citations:  Bibtex RefMan EndNote GB/T7714




-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.1 P.176-186


High linearity U-band power amplifier design: a novel intermodulation point analysis method

Author(s):  Jie CUI, Peipei LI, Weixing SHENG

Affiliation(s):  School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Corresponding email(s):   cuijie@njust.edu.cn

Key Words:  CMOS silicon-on-insulator (SOI), Linearity analysis, Milimeter wave (mm-Wave), Power amplifier

Share this article to: More <<< Previous Article|

Jie CUI, Peipei LI, Weixing SHENG. High linearity U-band power amplifier design: a novel intermodulation point analysis method[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(1): 176-186.

@article{title="High linearity U-band power amplifier design: a novel intermodulation point analysis method",
author="Jie CUI, Peipei LI, Weixing SHENG",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T High linearity U-band power amplifier design: a novel intermodulation point analysis method
%A Jie CUI
%A Peipei LI
%A Weixing SHENG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 1
%P 176-186
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200082

T1 - High linearity U-band power amplifier design: a novel intermodulation point analysis method
A1 - Jie CUI
A1 - Peipei LI
A1 - Weixing SHENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 1
SP - 176
EP - 186
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200082

A power amplifier’s linearity determines the emission signal’s quality and the efficiency of the system. Nonlinear distortion can result in system bit error, out-of-band radiation, and interference with other channels, which severely influence communication system’s quality and reliability. Starting from the third-order intermodulation point of the milimeter wave (mm-Wave) power amplifiers, the circuit’s nonlinearity is compensated for. The analysis, design, and implementation of linear class AB mm-Wave power amplifiers based on GlobalFoundries 45 nm CMOS silicon-on-insulator (SOI) technology are presented. Three single-ended and differential stacked power amplifiers have been implemented based on cascode cells and triple cascode cells operating in U-band frequencies. According to nonlinear analysis and on-wafer measurements, designs based on triple cascode cells outperform those based on cascode cells. Using single-ended measurements, the differential power amplifier achieves a measured peak power-added efficiency (PAE) of 47.2% and a saturated output power (Psat) of 25.2 dBm at 44 GHz. The amplifier achieves a Psat higher than 23 dBm and a maximum PAE higher than 25% in the measured bandwidth from 44 GHz to 50 GHz.


摘要:功率放大器的线性度决定了通信系统的信号发射质量与系统的发射效率。非线性失真会导致系统误码、带外辐射以及临近信道干扰,严重影响着通信系统的质量和可靠性。论文从毫米波功率放大器的三阶互调点入手,对电路的非线性进行补偿。介绍了基于格罗方德(GlobalFoundries) 45 nm绝缘体硅工艺的AB类线性毫米波功率放大器(PA)的分析、设计和测试情况。设计了三种工作在U波段的基于共源共栅和三管堆叠单元结构的单端和差分堆叠功率放大器。根据非线性分析和在片测试结果对比,发现基于三管堆叠单元的设计要优于基于共源共栅单元的设计。使用单端测量方法设计的差分功率放大器在44 GHz时实现了47.2%的峰值功率附加效率(PAE)和25.2 dBm的饱和输出功率(Psat)。该放大器在44 GHz至50 GHz的工作带宽内实现了Psat高于23 dBm和峰值PAE高于25%的性能。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Borel A, Barzdėnas V, Vasjanov A, 2021. Linearization as a solution for power amplifier imperfections: a review of methods. Electronics, 10(9):1073.

[2]Chen B, Shen L, Liu SP, et al., 2014. A broadband, high isolation millimeter-wave CMOS power amplifier using a transformer and transmission line matching topology. Analog Integr Circ Signal Process, 81(2):537-547.

[3]Chen HC, Zhu HS, Wu L, et al., 2021. A 9.8‍–‍30.1 GHz CMOS low-noise amplifier with a3.2-dB noise figure using inductor- and transformer-‍based gm‍-‍boosting techniques. Front Inform Technol Electron Eng, 22(4):586-598.

[4]Cripps SC, 2006. RF Power Amplifiers for Wireless Communications (2nd Ed.). Artech House, Norwood, USA, p.5-11.

[5]Cui J, Helmi S, Tang YH, et al., 2016. Stacking the deck for efficiency: RF- to millimeter-wave stacked CMOS SOI power amplifiers. IEEE Microw Mag, 17(12):55-69.

[6]Elkholy M, Shakib S, Dunworth J, et al., 2018. A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS. IEEE Microw Wirel Compon Lett, 28(1):64-66.

[7]Ghorbani AR, Ghaznavi-Ghoushchi MB, 2017. A novel fully differential CMOS class-E power amplifier with higher output power and efficiency for IOT application. Wirel Pers Commun, 97(2):3203-3213.

[8]Helmi SR, Mohammadi S, 2016. A highly efficient mm-Wave CMOS SOI power amplifier. Proc IEEE MTT-S Int Microwave Symp, p.1-3.

[9]Helmi SR, Chen JH, Mohammadi S, 2016. High-efficiency microwave and mm-Wave stacked cell CMOS SOI power amplifiers. IEEE Trans Microw Theory Techn, 64(7):2025-2038.

[10]Jiang ZD, Guo KZ, Huang P, et al., 2017. 45-GHz and 60-GHz 90 nm CMOS power amplifiers with a fully symmetrical 8-way transformer power combiner. Sci China Inform Sci, 60(8):080303.

[11]Kondoh H, 1986. An accurate FET modelling from measured S-parameters. IEEE MTT-S Int Microwave Symp Digest, p.377-380.

[12]Le QH, Huynh DK, Lehmann S, et al., 2021. Empirical large-signal modeling of mm-Wave FDSOI CMOS based on Angelov model. IEEE Trans Electron Dev, 68(4):1446-1453.

[13]Li TW, Huang MY, Wang H, 2019. Millimeter-wave continuous-mode power amplifier for 5G MIMO applications. IEEE Trans Microw Theory Techn, 67(7):3088-3098.

[14]Lopez-Bueno D, Wang T, Gilabert PL, et al., 2016. Amping up, saving power: digital predistortion linearization strategies for power amplifiers under wideband 4G/5G burst-like waveform operation. IEEE Microw Mag, 17(1):79-87.

[15]Mayeda J, Lie DYC, Lopez J, 2021. Broadband millimeter-wave 5G CMOS power amplifiers with high efficiency at power backoff and ESD-protection in 22nm FD-SOI. IEEE Int Midwest Symp on Circuits and Systems, p.899-902.

[16]Park HC, Park B, Cho Y, et al., 2019. A high efficiency 39GHz CMOS cascode power amplifier for 5G applications. IEEE Radio Frequency Integrated Circuits Symp, p.179-182.

[17]Reina-Tosina J, Allegue-Martínez M, Crespo-Cadenas C, et al., 2015. Behavioral modeling and predistortion of power amplifiers under sparsity hypothesis. IEEE Trans Microw Theory Techn, 63(2):745-753.

[18]Shen YF, Cui J, Mohammadi S, 2017. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors. Sol-State Electron, 131:45-52.

[19]Varahram P, Mohammady S, Ali BM, et al., 2014. Power Efficiency in Broadband Wireless Communications. CRC Press, Boca Raton, USA, p.185-223.

[20]Vigilante M, Reynaert P, 2018. A wideband class-AB power amplifier with 29‍–‍57-GHz AM‍–‍PM compensation in0.9-V 28-nm bulk CMOS. IEEE J Sol-State Circ, 53(5):1288-1301.

[21]Wang CW, Chen YC, Lin WJ, et al., 2020. A 20.8-41.6-GHz transformer-based wideband power amplifier with 20.4-dB peak gain using 0.9-V 28-nm CMOS process. IEEE/MTT-S Int Microwave Symp, p.1323-1326.

[22]Wang H, Kousai S, Onizuka K, et al., 2015. The wireless workhorse: mixed-signal power amplifiers leverage digital and analog techniques to enhance large-signal RF operations. IEEE Microw Mag, 16(9):36-63.

[23]Wang SQ, Roger M, Sarrazin J, et al., 2020. A joint crest factor reduction and digital predistortion for power amplifiers linearization based on clipping-and-bank-filtering. IEEE Trans Microw Theory Techn, 68(7):2725-2733.

[24]Xia JJ, Fang XH, Boumaiza S, 2018. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microw Wirel Compon Lett, 28(8):711-713.

[25]Xu Y, Kinget PR, 2018. A chopping switched-capacitor RF receiver with integrated blocker detection. IEEE J Sol-State Circ, 53(6):1607-1617.

[26]Yeh PC, Fossum JG, 1995. Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology. IEEE Trans Electron Dev, 42(9):1605-1613.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE