CLC number: TN92
On-line Access: 2023-02-27
Received: 2022-05-05
Revision Accepted: 2023-02-27
Crosschecked: 2022-10-10
Cited: 0
Clicked: 1806
Citations: Bibtex RefMan EndNote GB/T7714
Xinyao WANG, Xuyan BAO, Yuzhen HUANG, Zhong ZHENG, Zesong FEI. On optimization of cooperative MIMO for underlaid secrecy Industrial Internet of Things[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(2): 259-274.
@article{title="On optimization of cooperative MIMO for underlaid secrecy Industrial Internet of Things",
author="Xinyao WANG, Xuyan BAO, Yuzhen HUANG, Zhong ZHENG, Zesong FEI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="2",
pages="259-274",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200188"
}
%0 Journal Article
%T On optimization of cooperative MIMO for underlaid secrecy Industrial Internet of Things
%A Xinyao WANG
%A Xuyan BAO
%A Yuzhen HUANG
%A Zhong ZHENG
%A Zesong FEI
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 2
%P 259-274
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200188
TY - JOUR
T1 - On optimization of cooperative MIMO for underlaid secrecy Industrial Internet of Things
A1 - Xinyao WANG
A1 - Xuyan BAO
A1 - Yuzhen HUANG
A1 - Zhong ZHENG
A1 - Zesong FEI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 2
SP - 259
EP - 274
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200188
Abstract: In this paper, physical layer security techniques are investigated for cooperative multi-input multi-output (C-MIMO), which operates as an underlaid cognitive radio system that coexists with a primary user (PU). The underlaid secrecy paradigm is enabled by improving the secrecy rate towards the C-MIMO receiver and reducing the interference towards the PU. Such a communication model is especially suitable for implementing Industrial Internet of Things (IIoT) systems in the unlicensed spectrum, which can trade off spectral efficiency and information secrecy. To this end, we propose an eigenspace-adaptive precoding (EAP) method and formulate the secrecy rate optimization problem, which is subject to both the single device power constraint and the interference power constraint. This precoder design is enabled by decomposing the original optimization problem into eigenspace selection and power allocation sub-problems. Herein, the eigenvectors are adaptively selected by the transmitter according to the channel conditions of the underlaid users and the PUs. In addition, a simplified EAP method is proposed for large-dimensional C-MIMO transmission, exploiting the additional spatial degree of freedom for a low-complexity secrecy precoder design. Numerical results show that by transmitting signal and artificial noise in the properly selected eigenspace, C-MIMO can eliminate the secrecy outage and outperforms the fixed eigenspace precoding methods. Moreover, the proposed simplified EAP method for the large-dimensional C-MIMO can significantly improve the secrecy rate.
[1]Akhyar F, Lin CY, Muchtar K, et al., 2019. High efficient single-stage steel surface defect detection. Proc 16th IEEE Int Conf on Advanced Video and Signal Based Surveillance, p.1-4.
[2]Ben-Tal A, Nemirovski A, 2001. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Springer, Philadelphia, USA.
[3]Bloch MR, Laneman JN, 2013. Strong secrecy from channel resolvability. IEEE Trans Inform Theory, 59(12):8077-8098.
[4]Borges PVK, Izquierdo E, 2010. A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circ Syst Video Technol, 20(5):721-731.
[5]Chen LW, Chen CR, Chen DE, 2017. VIPS: a video-based indoor positioning system with centimeter-grade accuracy for the IoT. Proc IEEE Int Conf on Pervasive Computing and Communications Workshops, p.63-65.
[6]Chettri L, Bera R, 2020. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Int Things J, 7(1):16-32.
[7]Chiurtu N, Rimoldi B, Telatar E, 2001. On the capacity of multi-antenna Gaussian channels. Proc IEEE Int Symp on Information Theory, p.53-57.
[8]Csiszar I, Körner J, 1978. Broadcast channels with confidential messages. IEEE Trans Inform Theory, 24(3):339-348.
[9]Deng YS, Wang LF, Zaidi SAR, et al., 2016. Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans Commun, 64(5):2116-2129.
[10]Fang B, Qian ZP, Shao W, et al., 2016. Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Trans Veh Technol, 65(8):6753-6758.
[11]Goel S, Negi R, 2008. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun, 7(6):2180-2189.
[12]Hampel G, Li C, Li JY, 2019. 5G ultra-reliable low-latency communications in factory automation leveraging licensed and unlicensed bands. IEEE Commun Mag, 57(5):117-123.
[13]He X, Yener A, 2014. MIMO wiretap channels with unknown and varying eavesdropper channel states. IEEE Trans Inform Theory, 60(11):6844-6869.
[14]Hořejší P, Novikov K, Šimon M, 2020. A smart factory in a smart city: virtual and augmented reality in a smart assembly line. IEEE Access, 8:94330-94340.
[15]Horst R, Tuy H, 1996. Global Optimization (3rd Ed.). Springer, Berlin, Heidelberg, Germany.
[16]Hu TT, Xiong J, Ma DT, et al., 2018. Optimal and robust AN-aided precoding design for cognitive MIMOME wiretap channels. Proc IEEE/CIC Int Conf on Communications in China, p.500-505.
[17]Hussain T, Muhammad K, Del Ser J, et al., 2020. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Trans Ind Inform, 16(4):2592-2602.
[18]Lin PH, Lai SH, Lin SC, et al., 2013. On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun, 31(9):1728-1740.
[19]Lu X, Petrov V, Moltchanov D, et al., 2019. 5G-U: conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT. IEEE Commun Mag, 57(7):92-98.
[20]Nguyen DC, Ding M, Pathirana PN, et al., 2022. 6G Internet of Things: a comprehensive survey. IEEE Int Things J, 9(1):359-383.
[21]Ozgur A, Leveque O, Tse D, 2013. Spatial degrees of freedom of large distributed MIMO systems and wireless ad hoc networks. IEEE J Sel Areas Commun, 31(2):202-214.
[22]Pei YY, Liang YC, Zhang L, et al., 2010. Secure communication over MISO cognitive radio channels. IEEE Trans Wirel Commun, 9(4):1494-1502.
[23]Rajashekar R, Hanzo L, 2017. Iterative matrix decomposition aided block diagonalization for mm-wave multi- user MIMO systems. IEEE Trans Wirel Commun, 16(3):1372-1384.
[24]Sibomana L, Tran H, Zepernick HJ, 2015. On physical layer security for cognitive radio networks with primary user interference. Proc IEEE Military Communications Conf, p.281-286.
[25]Simon SH, Moustakas AL, Marinelli L, 2006. Capacity and character expansions: moment-generating function and other exact results for MIMO correlated channels. IEEE Trans Inform Theory, 52(12):5336-5351.
[26]Sternberg S, 1995. Group Theory and Physics. Cambridge University Press, Cambridge, UK.
[27]Wang HM, Wang C, Ng DWK, et al., 2016. Artificial noise assisted secure transmission for distributed antenna systems. IEEE Trans Signal Process, 64(15):4050-4064.
[28]Wyner AD, 1975. The wire-tap channel. Bell Syst Techn J, 54(8):1355-1387.
[29]Zhang X, Zhou XY, McKay MR, 2013. On the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. IEEE Trans Veh Technol, 62(5):2170-2181.
[30]Zheng TX, Wang HM, Yuan JH, et al., 2015. Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans Commun, 63(11):4347-4362.
[31]Zheng Z, Haas ZJ, 2017. On the performance of reconfigurable distributed MIMO in mobile networks. IEEE Trans Commun, 65(4):1609-1622.
[32]Zheng Z, Haas ZJ, Kieburg M, 2019. Secrecy rate of cooperative MIMO in the presence of a location constrained eavesdropper. IEEE Trans Commun, 67(2):1356-1370.
[33]Zhou XY, McKay MR, 2010. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans Veh Technol, 59(8):3831-3842.
[34]Zhu FC, Yao ML, 2016. Improving physical-layer security for CRNs using SINR-based cooperative beamforming. IEEE Trans Veh Technol, 65(3):1835-1841.
[35]Zhu Y, Zhou YK, Patel S, et al., 2013. Artificial noise generated in MIMO scenario: optimal power design. IEEE Signal Process Lett, 20(10):964-967.
Open peer comments: Debate/Discuss/Question/Opinion
<1>