Full Text:   <3546>

CLC number: TM36; TN710

On-line Access: 2023-07-24

Received: 2022-06-12

Revision Accepted: 2022-09-16

Crosschecked: 2023-07-24

Cited: 0

Clicked: 1470

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei DONG

https://orcid.org/0000-0002-1211-6444

Bimal Jeet GOTEEA

https://orcid.org/0000-0002-3101-1584

Qianjun ZHANG

https://orcid.org/0000-0002-9862-5695

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.7 P.1080-1092

http://doi.org/10.1631/FITEE.2200255


Electronically enhancing the long-range nanopositioning accuracy of a Lorentz force actuator


Author(s):  Bimal Jeet GOTEEA, Qianjun ZHANG, Wei DONG

Affiliation(s):  State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Corresponding email(s):   bj.goteea@gmail.com, zhang_qj@stu.hit.edu.cn, dongwei@hit.edu.cn

Key Words:  Nanopositioning, Flexure guides, Long range, Voice coil motor, Lorentz force actuator


Share this article to: More <<< Previous Article|

Bimal Jeet GOTEEA, Qianjun ZHANG, Wei DONG. Electronically enhancing the long-range nanopositioning accuracy of a Lorentz force actuator[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(7): 1080-1092.

@article{title="Electronically enhancing the long-range nanopositioning accuracy of a Lorentz force actuator",
author="Bimal Jeet GOTEEA, Qianjun ZHANG, Wei DONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="7",
pages="1080-1092",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200255"
}

%0 Journal Article
%T Electronically enhancing the long-range nanopositioning accuracy of a Lorentz force actuator
%A Bimal Jeet GOTEEA
%A Qianjun ZHANG
%A Wei DONG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 7
%P 1080-1092
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200255

TY - JOUR
T1 - Electronically enhancing the long-range nanopositioning accuracy of a Lorentz force actuator
A1 - Bimal Jeet GOTEEA
A1 - Qianjun ZHANG
A1 - Wei DONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 7
SP - 1080
EP - 1092
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200255


Abstract: 
This paper presents a precision centimeter-range positioner based on a lorentz force actuator using flexure guides. An additional digital-to-analog converter and an operational amplifier (op amp) circuit together with a suitable controller are used to enhance the positioning accuracy to the nanometer level. First, a suitable coil is designed for the actuator based on the stiffness of the flexure guide model. The flexure mechanism and actuator performance are then verified with finite element analysis. Based on these, a means to enhance the positioning performance electronically is presented together with the control scheme. Finally, a prototype is fabricated, and the performance is evaluated. This positioner features a range of 10 mm with a resolution of 10 nm. The proposed scheme can be extended to other systems.

以电子方式提升洛伦兹力驱动器的大行程纳米定位精度

Bimal Jeet GOTEEA,张前军,董为
哈尔滨工业大学机器人技术与系统国家重点实验室,中国哈尔滨市,150001
摘要:本文展现了一种基于洛伦兹力驱动器和柔顺导向的精密厘米级定位器。通过使用一个额外的数模转换器(DAC)和运算放大器(opamp)电路,以及合适的控制器将定位精度提高到纳米级。首先,基于柔顺导向模型的刚度为驱动器设计了恰当的线圈。然后通过有限元分析(FEA)验证了柔顺机构和驱动器的性能。基于此,提出一种通过电子方式提升定位性能的方法及控制方案。最后,构建了原理样机并对其性能进行评估。该定位器的特色在于其在10mm行程内实现10 nm分辨率。所提出的方案可以拓展适用于其他同类型系统。

关键词:纳米定位;柔顺导向;大行程;音圈电机;洛伦兹力驱动器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Baronti F, Lazzeri A, Roncella R, et al., 2013. Design and characterization of a robotized gearbox system based on voice coil actuators for a Formula SAE race car. IEEE/ASME Trans Mechatron, 18(1):53-61.

[2]Cheung NC, Cheung BMY, 1997. Modelling and control of a high speed, long travel, dual voice coil actuator. Proc 2nd Int Conf on Power Electronics and Drive Systems, p.270-274.

[3]Choi YM, Gweon DG, 2011. A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Trans Mechatron, 16(5):925-931.

[4]Christiansen B, Maurer H, Zirn O, 2008. Optimal control of a voice-coil-motor with coulombic friction. Proc 47th IEEE Conf on Decision and Control, p.1557-1562.

[5]Devasia S, Eleftheriou E, Moheimani SOR, 2007. A survey of control issues in nanopositioning. IEEE Trans Contr Syst Technol, 15(5):802-823.

[6]Dimitrova Z, Tari M, Lanusse P, et al., 2019. Robust control for an electromagnetic actuator for a camless engine. Mechatronics, 57:109-128.

[7]Dong W, Tang J, ElDeeb Y, 2009. Design of a linear-motion dual-stage actuation system for precision control. Smart Mater Struct, 18(9):095035.

[8]Gao HL, Zhang FJ, Wang EH, et al., 2019. Optimization and simulation of a voice coil motor for fuel injectors of two-stroke aviation piston engine. Adv Mech Eng, 11(4):1-17.

[9]Gu GY, Zhu LM, Su CY, et al., 2016. Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans Autom Sci Eng, 13(1):313-332.

[10]Hiemstra DB, Parmar G, Awtar S, 2014. Performance trade offs posed by moving magnet actuators in flexure-based nanopositioning. IEEE/ASME Trans Mechatron, 19(1):201-212.

[11]Howell LL, 2013. Compliant mechanisms. Proc 21‍st Century Kinematics, p.189-216.

[12]Kim JY, Ahn D, 2020. Analysis of high force voice coil motors for magnetic levitation. Actuators, 9(4):133.

[13]Kim KH, Choi YM, Gweon DG, et al., 2006. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system. Proc SPIE, 6040:60401C.

[14]Kim WJ, Trumper DL, Lang JH, 1998. Modeling and vector control of planar magnetic levitator. IEEE Trans Ind Appl, 34(6):1254-1262.

[15]Lee HS, Tomizuka M, 1996. Robust motion controller design for high-accuracy positioning systems. IEEE Trans Ind Electron, 43(1):48-55.

[16]Leung C, Lu Z, Esfandiari N, et al., 2011. Automated sperm immobilization for intracytoplasmic sperm injection. IEEE Trans Biomed Eng, 58(4):935-942.

[17]Lin CJ, Yau HT, Tian YC, 2013. Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans Mechatron, 18(4):1385-1396.

[18]Lin R, Li YZ, Zhang YX, et al., 2019. Design of a flexure-based mixed-kinematic XY high-precision positioning platform with large range. Mech Mach Theory, 142:103609.

[19]Makarovic J, 2006. Lightweight Positioning: Design and Optimization of an Actuator with Two Controlled Degrees of Freedom. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, the Netherlands.

[20]Mercorelli P, 2017. A motion-sensorless control for intake valves in combustion engines. IEEE Trans Ind Electron, 64(4):3402-3412.

[21]Pham HH, Chen IM, 2005. Stiffness modeling of flexure parallel mechanism. Prec Eng, 29(4):467-478.

[22]Probst M, Fluckiger M, Pané S, et al., 2009. Manufacturing of a hybrid acoustic transmitter using an advanced microassembly system. IEEE Trans Ind Electron, 56(7):‍2657-2666.

[23]Shan GQ, Li YZ, Zhang LW, et al., 2015. Contributed review: application of voice coil motors in high-precision positioning stages with large travel ranges. Rev Sci Instrum, 86(10):101501.

[24]Sharon A, Hogan N, Hardt DE, 1993. The macro/micro manipulator: an improved architecture for robot control. Robot Comput Integr Manuf, 10(3):209-222.

[25]Shinno H, Hashizume H, 2001. High speed nanometer positioning using a hybrid linear motor. CIRP Ann, 50(1):243-246.

[26]Takrouri M, Dhaouadi R, 2016. ADALINE-based friction identification of a linear voice coil DC motor. Proc American Control Conf, p.3062-3068.

[27]Tan KK, Huang SN, Liang WY, et al., 2012. Development of a spherical air bearing positioning system. IEEE Trans Ind Electron, 59(9):3501-3509.

[28]Teo TJ, Chen IM, Yang GL, et al., 2007. Magnetic field modeling of a dual-magnet configuration. J Appl Phys, 102(7):074924.

[29]Teo TJ, Chen IM, Kiew CM, et al., 2010. Model-based control of a high-precision imprinting actuator for micro-channel fabrications. Proc IEEE Int Conf on Robotics and Automation, p.3159-3164.

[30]Teo TJ, Yang GL, Chen IM, 2014. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: Part I. Modeling and analyses. Prec Eng, 38(4):861-871.

[31]Teo TJ, Bui VP, Yang G, et al., 2015. Millimeters-stroke nanopositioning actuator with high positioning and thermal stability. IEEE/ASME Trans Mechatron, 20(6):2813-2823.

[32]Wang TW, Li YZ, Zhang YX, et al., 2021. Design of a flexure-based parallel XY micropositioning stage with millimeter workspace and high bandwidth. Sens Actuat A Phys, 331:112899.

[33]Xu QS, 2012. New flexure parallel-kinematic micropositioning system with large workspace. IEEE Trans Rob, 28(2):478-491.

[34]Xu QS, 2013. Design, testing and precision control of a novel long-stroke flexure micropositioning system. Mech Mach Theory, 70:209-224.

[35]Xu QS, 2014. Design and development of a compact flexure-based XY precision positioning system with centimeter range. IEEE Trans Ind Electron, 61(2):893-903.

[36]Yang M, Zhang C, Huang XL, et al., 2022. A long-stroke nano positioning stage with annular flexure guides. IEEE/ASME Trans Mechatron, 27(3):1570-1581.

[37]Yoo YM, Kwon BI, 2007. A dual-servo type VCM for a nano-level measurement system. J Electr Eng Technol, 2(1):50-54.

[38]Zhu HY, Teo TJ, Pang CK, 2018. Analytical model-based multiphysics optimization of a nanopositioning electromagnetic actuator. IEEE Trans Ind Electron, 65(1):478-487.

[39]Zhu HY, Teo TJ, Pang CK, 2019. Magnetically levitated parallel actuated dual-stage (maglev-PAD) system for six-axis precision positioning. IEEE/ASME Trans Mechatron, 24(4):1829-1838.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE