CLC number: O177.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5079
YANG Qi-xiang. Decomposition in blocks at the level of wavelet coefficients and T(1) theorem on Hardy space[J]. Journal of Zhejiang University Science A, 2002, 3(1): 94-99.
@article{title="Decomposition in blocks at the level of wavelet coefficients and T(1) theorem on Hardy space",
author="YANG Qi-xiang",
journal="Journal of Zhejiang University Science A",
volume="3",
number="1",
pages="94-99",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0094"
}
%0 Journal Article
%T Decomposition in blocks at the level of wavelet coefficients and T(1) theorem on Hardy space
%A YANG Qi-xiang
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 1
%P 94-99
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0094
TY - JOUR
T1 - Decomposition in blocks at the level of wavelet coefficients and T(1) theorem on Hardy space
A1 - YANG Qi-xiang
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 1
SP - 94
EP - 99
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0094
Abstract: This paper deals with the establishment of T(1) theorem on hardy space H1 under condition of weak regularity. An operator or a function is identified on the basis of their wavelet coefficients which are regrouped on some blocks. The actions of each block operator (pseudo-annular operator) on each block function (atom) are exactly analyzed to establish T(1) theorem on hardy space
[1] Beylkin,G., Coifman,R. and Rokhlin,V., 1991. Fast wavelet transformation and numerical algorithm I. Comm.Pure Appl.Math.,41:141-183.
[2] Coifman,R., Weiss,G., 1977. Extensions of Hardy spaces and their use in analysis., Bull.Amer.Math.Soc., 83:569-645.
[3] David,G., Journé,J.L., 1984. A boundedness criterion for generalized Calderéon-Zygmund operators. Ann. of Math., 120:371-397.
[4] Deng,D.G. Yan,L.X. Yang,Q.X., 1998. Blocking analysis and T(1) theorem. Science in China, 8:(41):801-808.
[5] Han,Y.S., Hofman,S., 1993. T(1) theorem for Besov and Triebel-Lizorkin space. Transactions of the American Mathematical Society, 2: 337.
[6] Meyer,Y., 1985. Universidad autónoma de Madrid. (The smallest Besov space B10,1 and certains singular integral operators' continuity). Monografias de Matematicas, 4.
[7] Meyer,Y., 1990-1991. Ondelettes et op'erateurs I et II (Wavelettes and operators), Herman, Paris.
[8] Yang,Q.X., 1996. Fast algorithms for Calderéon-Zygmund singular intergral operators. Appl. and Comp. Harmonic analysis, 3: 120-126
Open peer comments: Debate/Discuss/Question/Opinion
<1>