Full Text:   <1544>

CLC number: O177

On-line Access: 

Received: 2003-09-28

Revision Accepted: 2004-01-17

Crosschecked: 0000-00-00

Cited: 9

Clicked: 3531

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.7 P.764~772

10.1631/jzus.2004.0764


A flower image retrieval method based on ROI feature


Author(s):  HONG An-xiang, CHEN Gang, LI Jun-li, CHI Zhe-ru, ZHANG Dan

Affiliation(s):  Department of Applied Mathematics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   Hax@nbit.gov.cn

Key Words:  Flower image retrieval, Knowledge-driven segmentation, Flower image characterization, Region-of-Interest (ROI), Color features, Shape features


Share this article to: More

HONG An-xiang, CHEN Gang, LI Jun-li, CHI Zhe-ru, ZHANG Dan. A flower image retrieval method based on ROI feature[J]. Journal of Zhejiang University Science D, 2022, 5(7): 764~772.

@article{title="A flower image retrieval method based on ROI feature",
author="HONG An-xiang, CHEN Gang, LI Jun-li, CHI Zhe-ru, ZHANG Dan",
journal="Journal of Zhejiang University Science D",
volume="5",
number="7",
pages="764~772",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0764"
}

%0 Journal Article
%T A flower image retrieval method based on ROI feature
%A HONG An-xiang
%A CHEN Gang
%A LI Jun-li
%A CHI Zhe-ru
%A ZHANG Dan
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 7
%P 764~772
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0764

TY - JOUR
T1 - A flower image retrieval method based on ROI feature
A1 - HONG An-xiang
A1 - CHEN Gang
A1 - LI Jun-li
A1 - CHI Zhe-ru
A1 - ZHANG Dan
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 7
SP - 764
EP - 772
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0764


Abstract: 
flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Albuz, E., Kocalar, E.D., Khokhar, A.A., 2000. Quantized CIE L*a*b* Space and Encoded Spatial Structure for Scalable Indexing of Large Color Image Archives. Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 4:1995-1998.

[2] Chien, B., Cheng, M., 2002. A Color Image Segmentation Approach Based on Fuzzy Similarity Measure. Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, 1:449-454.

[3] Das, M., Manmatha, R., Riseman, E.M., 1998. Indexing Flowers by Color Names Using Domain Knowledge-Driven Segmentation. Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision, p.94-99.

[4] Das, M., Manmatha, R., Riseman, E.M., 1999. Indexing flower patent images using domain knowledge.IEEE Intelligent Systems,14(5):24-33.

[5] Ezquerra, N., Mullick, R., 1996. Knowledge-guided segmentation of 3-D image.CVGIP, Graph., Models, Image Process.,58(6):512-523.

[6] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P., 1995. Query by image and video content: the QBIC system.Computer,28(9):23-32.

[7] Kankanhalli, M., Mehtre, B.M., Huang, H.Y., 1999. Color and spatial for content-based image retrieval.Pattern Recognition Letters,20(1):109-118.

[8] Loncaric, S., 1998. A survey of shape analysis techniques.Pattern Recognition,31(8):983-1001.

[9] Ma, W., Manjunath, B., 1997. Edge Flow: A Framework of Boundary Detection and Image Segmentation. IEEE Int. Conf. on Computer Vision and Pattern Recognition, p.744-749.

[10] Peng, H.L., Chen, S.Y., 1997. Trademark shape recognition using closed contours.Pattern Recognition Letters,18(8):791-803.

[11] Pentland, A., Picard, P., Sclaroff, S., 1996. Photobook: Content-based Manipulation of Image Databases.International Journal of Computer Vision,18(3):233-254.

[12] Ravishankar, K.C., Prasad, B.G., Gupta, S.K., Biswas, K.K., 1999. Dominant color region based indexing for CBIR. Proceedings International Conference on Image Analysis and Processing, p.887-892.

[13] Saitoh, T., Kaneko, T., 2000. Automatic Recognition of Wild Flowers. Proc. of the 15th International Conference on Pattern Recognition,2:507-510.

[14] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R., 2000. Content-based image retrieval at the end of the early years.IEEE Trans. on Pattern Analysis and Machine Intelligence,22(12):1349-1380.

[15] Sonka, M., Tadikonda, S., Collins, S., 1996. Knowledge-based interpretation of MR brain images.IEEE Transactions on Medical Imaging,15(4):443-452.

[16] Swain, M.J., Ballard, D.H., 1991. Color indexing.International Journal of Computer Vision,7(1):11-32.

[17] Xu, J., 2001. Efficient morphological shape representation with overlapping disk components.IEEE Transactions on Image Processing,10(9):1346-1356.

[18] Yining, D., Manjunath, B., Shin, H., 1999. Color Image Segmentation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2:445-451.

[19] Zhang, M., Hall, L., Goldgof, D.B., 2002. A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms.IEEE Transactions on Systems, Man and Cybernetics, Part B,32(10):571-582.

[20] Zhong, D.X., Yan, H., 2000. Color Image Segmentation Using Color Space Analysis and Fuzzy Clustering. Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop,2:624-633.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

arun kumar@spsu<arunkumarsai@gmail.com>

2013-04-02 12:13:12

good

v@u<abc@gmail.com>

2011-11-10 18:19:02

Good

Anonymous@No address<hawa\_me@yahoo.com>

2011-05-06 12:09:03

good

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE