Full Text:   <2735>

CLC number: O343.8; TB39

On-line Access: 

Received: 2005-01-17

Revision Accepted: 2005-05-10

Crosschecked: 0000-00-00

Cited: 0

Clicked: 6676

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.9 P.962-966

http://doi.org/10.1631/jzus.2005.A0962


A variational energy approach for electromechanical analysis of thick piezoelectric beam


Author(s):  LAU C.W.H., LIM C.W., LEUNG A.Y.T.

Affiliation(s):  Department of Building and Construction, City University of Hong Kong, Hong Kong, China; more

Corresponding email(s):   bccwlim@cityu.edu.hk

Key Words:  Energy, Electromechanical, Linear piezoelectricity, Ritz method, Thick beam


LAU C.W.H., LIM C.W., LEUNG A.Y.T.. A variational energy approach for electromechanical analysis of thick piezoelectric beam[J]. Journal of Zhejiang University Science A, 2005, 6(9): 962-966.

@article{title="A variational energy approach for electromechanical analysis of thick piezoelectric beam",
author="LAU C.W.H., LIM C.W., LEUNG A.Y.T.",
journal="Journal of Zhejiang University Science A",
volume="6",
number="9",
pages="962-966",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0962"
}

%0 Journal Article
%T A variational energy approach for electromechanical analysis of thick piezoelectric beam
%A LAU C.W.H.
%A LIM C.W.
%A LEUNG A.Y.T.
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 9
%P 962-966
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0962

TY - JOUR
T1 - A variational energy approach for electromechanical analysis of thick piezoelectric beam
A1 - LAU C.W.H.
A1 - LIM C.W.
A1 - LEUNG A.Y.T.
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 9
SP - 962
EP - 966
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0962


Abstract: 
A new two dimensional coupled electromechanical model for a thick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order shear deformation theory for the relatively thick elastic core and linear piezoelectric theory for the piezoelectric lamina. The actuation response is induced through the application of external electric voltage. Rayleigh-ritz method is adopted to model the displacement and potential fields of the beam and governing equations were finally derived from the variational energy principle. The model allows the piezoelectric lamina to be formulated via a two-dimensional model because of the strong electro-mechanical coupling and the presence of a two-dimensional electric field. Numerical examples of piezoelectric laminated beam are presented. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] ABAQUS, 2002. Explicit User’s Manual, Version 6.3. Habbit, Karlsson & Sorensen, Inc., USA.

[2] Crawley, E.F., Lazarus, K.B., 1991. Induced strain actuation of isotropic and anisotropic plates. AIAA Journal, 29(6):944-951.

[3] Huang, D., Sun, B., 2001. Approximate analytical solutions of smart composite Mindlin beams. J. Sound Vib., 244:379-394.

[4] Lee, C.K., 1990. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. J. Acoust. Soc. Am., 87:1144-1158.

[5] Lin, Q., Jin, Z., Liu, Z., 2000. An analytical solution to the laminated piezoelectric beam under the electric field. Structural Engineering and Mechanics, 10:289-298.

[6] Reddy, J.N., 1984. Energy and Variational Methods in Applied Mechanics: with an Introduction to the Finite Element Method. Wiley Interscience.

[7] Tzou, H.S., 1993. Piezoelectric Shells: Distributed Sensing and Control of Continua. Kluwer Academic, Dordrecht.

[8] Tzou, H.S., Gadre, M., 1989. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls. J. Sound Vib., 132:433-450.

[9] Tzou, H.S., Zhong, J.P., 1993. Electromechanics and vibrations of piezoelectric shell distributed systems. Journal of Dynamics Systems, Measurement and Control, 115:506-517.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE