CLC number: O42; O441
On-line Access:
Received: 2005-10-30
Revision Accepted: 2005-11-22
Crosschecked: 0000-00-00
Cited: 6
Clicked: 5785
Chan C.T., Li Jensen, Fung K.H.. On extending the concept of double negativity to acoustic waves[J]. Journal of Zhejiang University Science A, 2006, 7(1): 24-28.
@article{title="On extending the concept of double negativity to acoustic waves",
author="Chan C.T., Li Jensen, Fung K.H.",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="24-28",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0024"
}
%0 Journal Article
%T On extending the concept of double negativity to acoustic waves
%A Chan C.T.
%A Li Jensen
%A Fung K.H.
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 24-28
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0024
TY - JOUR
T1 - On extending the concept of double negativity to acoustic waves
A1 - Chan C.T.
A1 - Li Jensen
A1 - Fung K.H.
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 24
EP - 28
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0024
Abstract: The realization of double negative electromagnetic wave media, sometimes called left-handed materials (LHMs) or metamaterials, have drawn considerable attention in the past few years. We will examine the possibility of extending the concept to acoustic waves. We will see that acoustic metamaterials require both the effective density and bulk modulus to be simultaneously negative in the sense of an effective medium. If we can find a double negative (negative density and bulk modulus) acoustic medium, it will be an acoustic analogue of Veselago’s medium in electromagnetism, and share many novel consequences such as negative refractive index and backward wave characteristics. We will give one example of such a medium.
[1] Berryman, J.G., 1980. Long-wavelength propagation in composite elastic media. I. Spherical inclusions. J. Acoust. Soc. Am., 68:1809-1819.
[2] Hashin, Z., Shtrikman, S., 1962. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys., 33:3125-3131.
[3] Kafeski, M., Economou, E.N., 1999. Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B, 60:11993.
[4] Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P., 2000. Locally resonant sonic materials. Science, 289:1734-1736.
[5] Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B., 2002. All-angle negative refraction without negative effective index. Phys. Rev. B, 65:201104(R).
[6] Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85(18):3966-3969.
[7] Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47:2075-2084.
[8] Shelby, R.A., Smith, D.R., Schultz, S., 2001. Experimental verification of a negative index of refraction. Science, 292:77-79.
[9] Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ε and µ. Soviet Physics Uspekhi, 10(4):509-514.
[10] Yang, S., Page, J.H., Liu, Z.Y., Cowan, M.L., Chan, C.T., Sheng, P., 2004. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett., 93:024301.
[11] Zhang, X., Liu, Z.Y., 2004. Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett., 85:341-343.
Open peer comments: Debate/Discuss/Question/Opinion
<1>