CLC number: TN814
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 16
Clicked: 5673
Ren Yi-tao. Nonlinear effect induced in thermally poled glass waveguides[J]. Journal of Zhejiang University Science A, 2006, 7(1): 105-108.
@article{title="Nonlinear effect induced in thermally poled glass waveguides",
author="Ren Yi-tao",
journal="Journal of Zhejiang University Science A",
volume="7",
number="1",
pages="105-108",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0105"
}
%0 Journal Article
%T Nonlinear effect induced in thermally poled glass waveguides
%A Ren Yi-tao
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 1
%P 105-108
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0105
TY - JOUR
T1 - Nonlinear effect induced in thermally poled glass waveguides
A1 - Ren Yi-tao
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 1
SP - 105
EP - 108
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0105
Abstract: Thermally poled germanium-doped channel waveguides are presented. Multilayer waveguides containing a silicon oxynitride layer were used as charge trapper in this investigation on the effect of the internal field inside the waveguide. Compared to waveguides without the trapping layer, experimental results showed that the induced linear electro-optic (EO) coefficient increases about 20% after poling, suggesting strongly that the internal field is relatively enhanced, and showed it is a promising means for improving nonlinearity by poling in waveguides.
[1] Arentoft, J., Pedersen, K., Bozhevolnyi, S.I., Kristensen, M., Yu, P., Nielsen, C.B., 2000. Second-harmonic imaging of poled silica waveguides. Appl. Phys. Lett., 76:25-27.
[2] Faccio, D., Busacca, A., Harwood, D.W.J., Bonfrate, G., Pruneri, V., Kazansky, P.G., 2001. Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides. Opt. Comm., 196:187-190.
[3] Fujiwara, T., Takahashi, M., Ikushima, A.J., 1997. Decay behaviour of second-order nonlinearity in GeO2-SiO2 glass poled with UV-irradiation. Electronics Letters, 33(11):980-981.
[4] Kazansky, P.G., St Russel, P.J., 1994. Thermally poled glass: Frozen-in electric field or oriented dipoles. Opt. Comm., 110(5-6):611-614.
[5] Kazansky, P.G., Kamal, A., St Russell, P.J., 1993. High second-order nonlinearities induced in lead silica by electron-beam irradiation. Opt. Lett., 18(9):693-695.
[6] Marckmann, C.J., Ren, Y., Genty, G., Kristensen, M., 2002. Strength and symmetry of the third-order nonlinearity during poling of glass waveguides. IEEE Photon. Technol. Lett., 14:1294-1296.
[7] Myers, R.A., Mukherjee, N., Brueck, S.R.J., 1991. Large second-order nonlinearity in poled fused silica. Opt. Lett., 16(22):1732-1734.
[8] Ozcan, A., Digonnet, M.J.F., Kino, G.S., 2004. Characterization of thermally poled germanosilicate thin films. Optics Express, 12(20):4698-4708.
Open peer comments: Debate/Discuss/Question/Opinion
<1>