Full Text:   <2086>

CLC number: TN432

On-line Access: 

Received: 2006-08-16

Revision Accepted: 2006-10-23

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3165

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.1 P.50~55

http://doi.org/10.1631/jzus.2007.A0050


A novel low-voltage high precision current reference based on subthreshold MOSFETs


Author(s):  YU Guo-yi, ZOU Xue-cheng

Affiliation(s):  Department of Electronic Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding email(s):   ymancheng@yahoo.com.cn

Key Words:  Current reference, Curvature-compensation, Low voltage, Subthreshold, CMOS integrated circuit


YU Guo-yi, ZOU Xue-cheng. A novel low-voltage high precision current reference based on subthreshold MOSFETs[J]. Journal of Zhejiang University Science A, 2007, 8(1): 50~55.

@article{title="A novel low-voltage high precision current reference based on subthreshold MOSFETs",
author="YU Guo-yi, ZOU Xue-cheng",
journal="Journal of Zhejiang University Science A",
volume="8",
number="1",
pages="50~55",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0050"
}

%0 Journal Article
%T A novel low-voltage high precision current reference based on subthreshold MOSFETs
%A YU Guo-yi
%A ZOU Xue-cheng
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 1
%P 50~55
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0050

TY - JOUR
T1 - A novel low-voltage high precision current reference based on subthreshold MOSFETs
A1 - YU Guo-yi
A1 - ZOU Xue-cheng
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 1
SP - 50
EP - 55
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0050


Abstract: 
A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference current by a proper combination current of two first-order temperature-compensation current references, which exploit the temperature characteristics of integrated poly2 resistors and the I-V transconductance characteristics of MOSFET operating in the subthreshold region. The circuit, designed with the 1st silicon 0.35 µm standard CMOS logic process technology, exhibits a stable current of about 2.25 µA with much low temperature coefficient of 3×10−4 µA/°C in the temperature range of −40~150 °C at 1 V supply voltage, and also achieves a better power supply rejection ratio (PSRR) over a broad frequency. The PSRR is about −78 dB at DC and remains −42 dB at the frequency higher than 10 MHz. The maximal process error is about 6.7% based on the Monte Carlo simulation. So it has good process compatibility.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Ahuja, B.K., Vu, H., Laber, C.A., Owen, W.H., 2005. A very high precision 500-nA CMOS floating-gate analog voltage reference. IEEE Journal of Solid State Circuits, 40(12):2364-2372.

[2] Banba, H., Shiga, H., 1999. A CMOS bandgap reference circuit with sub 1-V operation. IEEE Journal of Solid State Circuits, 34(5):670-674.

[3] Chen, J., Shi, B., 2003. 1-V CMOS current reference with 50 ppm/°C temperature coefficient. Electronics Letters, 39(2):209-210.

[4] Filanovsky, I.M., Allam, A., 2001. Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuit and Systems, 48:876-884.

[5] Giustolisi, G., Palumbo, G., 2003. A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE Journal of Solid State Circuits, 38(1):151-154.

[6] Huang, P.H., Lin, H., Lin, Y.T., 2006. A simple subthreshold CMOS voltage reference circuit with channel length modulation compensation. IEEE Transactions on Circuit and Systems, 53(9):882-885.

[7] Liu, Z.Y., Kursun, V., 2006. Leakage power characteristics of dynamic circuits in nanometer CMOS technologies. IEEE Transactions on Circuit and Systems, 53(8):692-696.

[8] Mehr, I., Singer, L., 2000. A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC. IEEE Journal of Solid State Circuits, 35(3):318-325.

[9] Oh, T.H., Lee, H.Y., Park, H.J., Kim, J.W., 2004. A 1.8 V 8-bit 250Msample/s Nyquist-rate CMOS Pipelined ADC. ISCAS’04, 1(23-26):9-12.

[10] Razavi, B., 2001. Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York, p.377-400.

[11] Sze, S.M., 2002. Semiconductor Devices, Physics and Technology (2nd Ed.). John Wiley & Sons, NY, p.41-83.

[12] Taur, Y., Ning, T.H., 1998. Fundamentals of Modern VLSI Devices. Cambridge University Press, NY, p.112-138.

[13] Tsividis, Y.P., 1999. Operation and Modeling of the MOS Transistor (2nd Ed.). McGraw-Hill, NY, p.181-189.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE