CLC number: TH45; TB652
On-line Access:
Received: 2006-08-19
Revision Accepted: 2007-02-05
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5768
COQUELET Christophe, RICHON Dominique. Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants[J]. Journal of Zhejiang University Science A, 2007, 8(5): 724-733.
@article{title="Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants",
author="COQUELET Christophe, RICHON Dominique",
journal="Journal of Zhejiang University Science A",
volume="8",
number="5",
pages="724-733",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0724"
}
%0 Journal Article
%T Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants
%A COQUELET Christophe
%A RICHON Dominique
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 5
%P 724-733
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0724
TY - JOUR
T1 - Needs of thermodynamic properties measurements and modeling in the frame of new regulations on refrigerants
A1 - COQUELET Christophe
A1 - RICHON Dominique
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 5
SP - 724
EP - 733
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0724
Abstract: In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better understanding of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.
[1] Åberg, E.R., Gustavsson, A. G., 1982. Design and evaluation of modified simplex methods. Analytica Chimica Acta, 144(2):39-53.
[2] Bouchot, C., Richon, D., 1998. Direct PVT and VLE measurements with a single equipment using a vibrating tube densimeter up to 393 K and 40 MPa: description of the original apparatus and new data. Industrial & Engineering Chemistry Research, 37(8):3295-3304.
[3] Bouchot, C., Richon, D., 2001. An enhanced method to calibrate vibrating tube densimeter. Fluid Phase Equilib., 191:189-208.
[4] Chouai, A., Laugier S., Richon, D., 2002. Modelling of thermodynamic properties using neural networks. Application to refrigerants. Fluid Phase Equilib., 199(1-2):53-62.
[5] Coquelet, C., Nguyen H.D., Chareton, A., Baba-Ahmed, A., Richon, D., 2003a. Vapour-liquid equilibrium data for the difluoromethane+1,1,1,2,3,3,3-heptafluoropropane system at temperatures from 283.20 to 343.38 K and pressures up to 4.5 MPa. Int. J. Ref., 26(5):559-565.
[6] Coquelet, C., Chareton, A., Valtz, A., Baba-Ahmed, A., Richon, D., 2003b. Vapor-liquid equilibrium data for the difluoromethane+propane system at temperatures from 294.83 to 343.26 K and pressures up to 5.4 MPa. J. Chem. Eng. Data, 48(2):317-323.
[7] Coquelet, C., Chareton, A., Richon, D., 2004. Vapour-liquid equilibrium measurements and correlation of the difluoromethane (R32)+propane (R290)+1,1,1,2,3,3,3-heptafluoropropane (R227ea) ternary mixture at temperatures from 269.85 to 328.35 K. Fluid Phase Equilib., 218(2):209-214.
[8] Coquelet, C., Valtz, A., Richon, D., 2005. Vapour-liquid equilibrium data for the difluoromethane (R32)+dimethyl ether (DME) system at temperatures from 283.03 to 363.21 K and pressures up to 5.5 MPa. Fluid Phase Equilib., 232(1-2):44-49.
[9] Fontalba, F., Richon, D., Renon, H., 1984. Simultaneous determination of PVT and VLE data of binary mixtures up to 45 MPa and 433 K: A new apparatus without phase sampling and analysis. Rev. Sci. Instrum., 55(5):944-951.
[10] Galicia-Luna, L.A., Richon, D., Renon, H., 1994. New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide-methanol-propane system. J. Chem. Eng. Data, 39(3):424-431.
[11] Gmehling, J., Menke, J., Krafczyk, J., Fischer, K., 1994. Azeotropic Data Part I (1st Ed.). VCH Publishers, New York, USA.
[12] Guilbot, P., Valtz, A., Legendre, H., Richon, D., 2000. Rapid on line sampler-injector: A reliable tool for HT-HP sampling and on line GC analysis. Analusis, 28(5):426-431.
[13] Heidemann, R.A., Khalil, A.M., 1980. The calculation of critical points. AIChE J., 26(5):769-779.
[14] Huron, M.J., Vidal, J., 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non ideal mixtures. Fluid Phase Equilib., 3(4):255-271.
[15] Laugier, S., Richon, D., 1986. New apparatus to perform fast determinations of mixture vapor-liquid equilibria up to 10 MPa and 423 K. Rev. Sci. Instrum., 57(3):469-472.
[16] Laugier, S., Richon, D., 2003. Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data. Fluid Phase Equilib., 210(2):247-255.
[17] Legret, D., Desteve, J., Richon, D., Renon, H., 1983. Vapor-liquid equilibrium constants at infinite dilution determined by a gas stripping method: ethane, propane, n-butane, n-pentane in the methane-n-decane system. AIChE J., 29(1):137-144.
[18] Mathias, P.M., Copeman, T.W., 1983. Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of various forms of the local composition concept. Fluid Phase Equilib., 13(1):91-108.
[19] Meskel-Lesavre, M., Richon, D., Renon, H., 1981. A new variable volume cell for determining vapor-liquid equilibria and saturated liquid molar volume by the static method. Ind. Eng. Chem. Fundam., 20(3):284-289.
[20] Michelsen, M.L., 1990. A modified Huron-Vidal mixing rules for cubic equations of state. Fluid Phase Equilib., 60(1-2):213-219.
[21] Michelsen, M.L., Heidemann, R.A., 1981. Calculation of critical points from a two constant equations of state. AIChE J., 27(3):521-523.
[22] Peng, D.Y., Robinson, D.B., 1976. A new two parameters equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1):59-64.
[23] Redlich, O., Kwong, J.N.S., 1949. On the thermodynamics of solutions. V. An equation of state. fugacities of gaseous solutions. Chem. Rev., 44(1):233-244.
[24] Renon, H., Prausnitz, J.M., 1968. Local composition in thermodynamic excess function for liquid mixtures. AIChE J., 14(1):135-144.
[25] Rivollet, F., Chapoy, A., Coquelet, C., Richon, D., 2004. Vapor-liquid equilibrium data for the carbon dioxide (CO2) +difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa. Fluid Phase Equilib., 218(1):95-101.
[26] Scalabrin, G., Piazza, L., Richon, D., 2002. An equation of state for R227ea from density data through a new extended corresponding states-neural network technique. Fluid Phase Equilib., 199(1-2):33-51.
[27] Scalabrin, G., Marchi, P., Stringari, P., Richon, D., 2006a. An extended equation of state modeling method. I. Pure fluids. Int. J. Thermophysics, 27(5):1281-1318.
[28] Scalabrin, G., Marchi, P., Stringari, P., Richon, D., 2006b. An extended equation of state modeling method. II. Mixtures. Int. J. Thermophysics, 27(5):1319-1353.
[29] Stockfleth, R., Dohrn, R., 1998. An algorithm for calculating critical points in multicomponent mixtures which can be easily implemented in existing programs to calculate phase equilibria. Fluid Phase Equilib., 145(1):43-52.
[30] Valtz, A., Coquelet, C., Baba-Ahmed, A., Richon, D., 2002. Vapor-liquid equilibrium data for the propane+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 293.16 to 353.18 K and pressures up to 3.4 MPa. Fluid Phase Equilib., 202(1):29-47.
[31] Valtz, A., Coquelet, C., Baba-Ahmed, A., Richon, D., 2003. Vapor-liquid equilibrium data for the CO2+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 276.01 to 367.30 K and pressures up to 7.4 MPa. Fluid Phase Equilib., 207(1-2):53-67.
[32] Valtz, A., Coquelet, C., Richon, D., 2004a. Vapor-liquid equilibrium data for the sulfur dioxide (SO2)+difluoromethane (R32) system at temperatures from 288.07 to 403.16 K and pressures up to 7.31 MPa. Int. J. Thermophysics, 25(6):1695-1711.
[33] Valtz, A., Coquelet, C., Richon, D., 2004b. Vapor-liquid equilibrium data for the sulfur dioxide (SO2)+1,1,1,2,3,3,3-heptafluoropropane (R227ea) system at temperatures from 288.07 to 403.19 K and pressures up to 5.38 MPa. Representation of the critical point and azeotrope temperature dependence. Fluid Phase Equilib., 220(1):75-82.
[34] Valtz, A., Gicquel, L., Coquelet, C., Richon, D., 2005. Vapour-liquid equilibrium data for the 1,1,1,2 tetrafluoroethane (R134a)+dimethyl ether (DME) system at temperatures from 293.18 to 358.15 K and pressures up to 2.9442 MPa. Fluid Phase Equilib., 230(1-2):184-191.
[35] Wong, D.S.H., Sandler, S.I., 1992. A theoretically correct mixing rule for cubic equation of state. AIChE J., 38(5):671-680.
Open peer comments: Debate/Discuss/Question/Opinion
<1>