CLC number: TM911.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 6932
LI Wei, ZHU Xin-jian, CAO Guang-yi. Modeling and control of a small solar fuel cell hybrid energy system[J]. Journal of Zhejiang University Science A, 2007, 8(5): 734-740.
@article{title="Modeling and control of a small solar fuel cell hybrid energy system",
author="LI Wei, ZHU Xin-jian, CAO Guang-yi",
journal="Journal of Zhejiang University Science A",
volume="8",
number="5",
pages="734-740",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0734"
}
%0 Journal Article
%T Modeling and control of a small solar fuel cell hybrid energy system
%A LI Wei
%A ZHU Xin-jian
%A CAO Guang-yi
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 5
%P 734-740
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0734
TY - JOUR
T1 - Modeling and control of a small solar fuel cell hybrid energy system
A1 - LI Wei
A1 - ZHU Xin-jian
A1 - CAO Guang-yi
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 5
SP - 734
EP - 740
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0734
Abstract: This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.
[1] Abd El-Aal, A.E.M.M., Schmid, J., Bard, J., Caselitz, P., 2006. Modeling and optimizing the size of the power conditioning unit for photovoltaic systems. Journal of Solar Energy Engineering, Transactions of the ASME, 128(1):40-44.
[2] Amphlett, J.C., Baumert, R.M., Harris, T.J., Mann, R.F., Peppley, B.A., Roberge, P.R., 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. Journal of the Electrochemical Society, 142(1):1-8.
[3] Barthels, H., Brocke, W.A., Groehn, H.G., 1998. PHOEBUS-Julich: an autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell. International Journal of Hydrogen Energy, 23(4):295-301.
[4] Burke, A., 2000. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 91(1):37-50.
[5] Green, M.A., 1981. Solar cell fill factors: general graph and empirical expressions. Solid-State Electronics, 24(8):788-789.
[6] Hollmuller, P., Joubert, J., Lachal, B., Yvon, K., 2000. Evaluation of a 5 kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland. International Journal of Hydrogen Energy, 25(2):97-109.
[7] Hug, W., Bussmann, H., Brinner, A., 1993. Intermittent operation and operation modeling of an alkaline electrolyzer. International Journal of Hydrogen Energy, 18(12):973-977.
[8] Lehman, P.A., Chamberlin, C.E., Pauletto, G., Rocheleau, M.A., 1997. Operating experience with a photovoltaic-hydrogen energy system. International Journal of Hydrogen Energy, 22(5):465-470.
[9] Mann, R.F., Amphlett, J.C., Hoop, M.A.I., Jensen, H.M., Peppley, V.A., Roberge, P.R., 2000. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1-2):173-180.
[10] Ro, K., Rahman, S., 1998. Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant. IEEE Transactions on Energy Conversion, 13(3):276-281.
[11] Roger, J.A., Maguin, C., 1982. Photovoltaic solar panels simulation including dynamical thermal effects. Solar Energy, 29(3):245-256.
[12] Ulleberg, O., 2003. Modeling of advanced alkaline electrolyzers: A system simulation approach. International Journal of Hydrogen Energy, 28(1):21-33.
[13] Vanhanen, J.P., Lund, P.D., Hagström, M.T., 1996. Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system. International Journal of Hydrogen Energy, 21(3):213-221.
[14] Vosen, S.R., Keller, J.O., 1999. Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies. International Journal of Hydrogen Energy, 24(12):1139-1156.
Open peer comments: Debate/Discuss/Question/Opinion
<1>