Full Text:   <1525>

CLC number: O242.23

On-line Access: 

Received: 2006-09-20

Revision Accepted: 2007-01-04

Crosschecked: 0000-00-00

Cited: 4

Clicked: 2778

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.6 P.978~986


Kantorovich’s theorem for Newton’s method on Lie groups

Author(s):  WANG Jin-hua, LI Chong

Affiliation(s):  Department of Mathematics, Zhejiang University of Technology, Hangzhou 310032, China; more

Corresponding email(s):   wjh@zjut.edu.cn, cli@zju.edu.cn

Key Words:  Newton&rsquo, s method, Lie group, Kantorovich&rsquo, s theorem, Lipschitz condition

Share this article to: More <<< Previous Article|

WANG Jin-hua, LI Chong. Kantorovich’s theorem for Newton’s method on Lie groups[J]. Journal of Zhejiang University Science A, 2007, 8(6): 978~986.

@article{title="Kantorovich’s theorem for Newton’s method on Lie groups",
author="WANG Jin-hua, LI Chong",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Kantorovich’s theorem for Newton’s method on Lie groups
%A WANG Jin-hua
%A LI Chong
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 6
%P 978~986
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0978

T1 - Kantorovich’s theorem for Newton’s method on Lie groups
A1 - WANG Jin-hua
A1 - LI Chong
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 6
SP - 978
EP - 986
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0978

The convergence criterion of newton&rsquo;s method to find the zeros of a map f from a lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then newton&rsquo;s method on lie group converges to the zero; while this paper provides a kantorovich&rsquo;s criterion for the convergence of newton&rsquo;s method, not requiring the existence of a zero as a priori.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M., 2002. Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal., 22(3):359-390.

[2] Dedieu, J.P., Priouret, P., Malajovich, G., 2003. Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal., 23:395-419.

[3] Edelman, A., Arias, T.A., Smith, T., 1998. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20:303-353.

[4] Ferreira, O.P., Svaiter, B.F., 2002. Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complexity, 18:304-329.

[5] Gabay, D., 1982. Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl., 37:177-219.

[6] Gutierrez, J.M., Hernandez, M.A., 2000. Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal., 20:521-532.

[7] Kantorovich, L.V., 1948. On Newton method for functional equations. Dokl. Acad. Nauk, 59(7):1237-1240.

[8] Kantorovich, L.V., Akilov, G.P., 1982. Functional Analysis. Pergamon, Oxford.

[9] Li, C., Wang, J.H., 2005. Convergence of Newton’s method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. in China (Ser. A), 48(11):1465-1478.

[10] Li, C., Wang, J.H., 2006. Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal., 26(2):228-251.

[11] Mahony, R.E., 1996. The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebra Appl., 248:67-89.

[12] Owren, B., Welfert, B., 2000. The Newton iteration on Lie groups. BIT Numer. Math., 40:121-145.

[13] Smale, S., 1986. Newton’s Method Estimates from Data at One Point. In: Ewing, R., Gross, K., Martin, C. (Eds.), The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics. Springer, New York, p.185-196.

[14] Smith, S.T., 1993. Geometric Optimization Method for Adaptive Filtering. Ph.D Thesis, Harvard University, Cambridge, MA.

[15] Smith, S.T., 1994. Optimization Techniques on Riemannian Manifolds. Fields Institute Communications. American Mathematical Society, Providence, RI, 3:113-146.

[16] Udriste, C., 1994. Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and its Applications, Vol. 297, Kluwer Academic, Dordrecht.

[17] Varadarajan, V.S., 1984. Lie Groups, Lie Algebras and Their Representations. GTM No. 102. Springer-Verlag, New York.

[18] Wang, X.H., 1997. Convergence on the iteration of Halley family in weak conditions. Chin. Sci. Bull., 42:552-555. (in Chinese).

[19] Wang, X.H., Han, D.F., 1997. Criterion α and Newton’s method in weak condition. Chin. J. Numer. Appl. Math., 19:96-105.

[20] Wang, X.H., 1999. Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput., 68:169-186.

[21] Wang, J.H., Li, C., 2006. Uniqueness of the singular point of vector field on Riemannian manifold under the γ-condition. J. Complexity, 22:533-548.

[22] Warner, F.W., 1983. Foundations of Differentiable Manifolds and Lie Groups. GTM No. 94. Springer-Verlag, New York.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE