CLC number: X5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 6077
ZHANG Juan, CHEN Xue-ming, YAO Pei-dong, CHEN Guo-hua. Anodic oxidation of salicylic acid at Ta/BDD electrode[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1457-1461.
@article{title="Anodic oxidation of salicylic acid at Ta/BDD electrode",
author="ZHANG Juan, CHEN Xue-ming, YAO Pei-dong, CHEN Guo-hua",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1457-1461",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1457"
}
%0 Journal Article
%T Anodic oxidation of salicylic acid at Ta/BDD electrode
%A ZHANG Juan
%A CHEN Xue-ming
%A YAO Pei-dong
%A CHEN Guo-hua
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1457-1461
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1457
TY - JOUR
T1 - Anodic oxidation of salicylic acid at Ta/BDD electrode
A1 - ZHANG Juan
A1 - CHEN Xue-ming
A1 - YAO Pei-dong
A1 - CHEN Guo-hua
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1457
EP - 1461
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1457
Abstract: Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined. The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect of pH on SA degradation. The current efficiency (CE) was found to be dependent mainly on the initial SA concentration, current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of 200 A/m2 at 30 °C.
[1] Adán, C., Coronado, J.M., Bellod, R., Soria, J., Yamaoka, H., 2006. Photochemical and photocatalytic degradation of salicylic acid with hydrogen peroxide over TiO2/SiO2 fibers. Applied Catalysis A: General, 303(2):199-206.
[2] Ayranci, E., Duman, O., 2006. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. Journal of Hazardous Materials, 136(3):542-552.
[3] Brillas, E., Baños, M.Á., Skoumal, M., Cabot, P.L., Garrido, J.A., Rodríguez, R.M., 2007. Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere, 68(2):199-209.
[4] Cañizares, P., Lobato, J., Paz, R., Rodrigo, M.A., Sáez, C., 2005. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 39(12):2687-2703.
[5] Chen, X.M., Chen, G.H., 2006. Anodic oxidation of orange II on Ti/BDD electrode: Variable effects. Separation and Purification Technology, 48(1):45-49.
[6] Chen, X.M., Chen, G.H., Yue, P.L., 2003a. Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chemical Engineering Science, 58(3-6):995-1001.
[7] Chen, X.M., Chen, G.H., Gao, F.R., Yue, P.L., 2003b. High-performance Ti/BDD electrodes for pollutant oxidation. Environmental Science & Technology, 37(21):5021-5026.
[8] Deosarkar, S.P., Pangarkar, V.G., 2004. Adsorptive separation and recovery of organics from PHBA and SA plant effluents. Separation and Purification Technology, 38(3):241-254.
[9] Dhiman, A., Becker, J.Y., 2007. Anodic oxidation of aroyl and phenacyl azides. J. Electroanal. Chem., 604(2):133-136.
[10] Ernst, M., Lurot, F., Schrotter, J.C., 2004. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Applied Catalysis B: Environmental, 47(1):15-25.
[11] Fong, P., Chow, A., 1992. Extraction of aromatic acids and phenols by polyurethane foam. Talanta, 39(5):497-503.
[12] Liu, M., Jiao, X.Q., Wu, D., Diao, W.L., Zhang, Y., 2006. Several rules for treating phenol wastewater via oxidation by O3/UV-formed radicals. Chemical Research in Chinese Universities, 22(1):25-28.
[13] Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., Shirakashi, T., 2007. Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta, 52(9):3242-3249.
[14] Panizza, M., Michaud, P.A., Cerisola, G., Comninellis, C., 2001. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem., 507(1-2):206-214.
[15] Polcaro, A.M., Vacca, A., Mascia, M., Palmas, S., 2005. Oxidation at boron doped diamond electrodes: An effective method to mineralize triazines. Electrochemica Acta, 50(9):1841-1847.
[16] Vamathevan, V., Amal, R., Beydown, D., 2002. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemical, 148(1-3):233-245.
Open peer comments: Debate/Discuss/Question/Opinion
<1>