Full Text:   <2010>

CLC number: TQ922

On-line Access: 

Received: 2006-04-12

Revision Accepted: 2006-07-26

Crosschecked: 0000-00-00

Cited: 6

Clicked: 3805

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.2 P.98~104

http://doi.org/10.1631/jzus.2007.B0098


Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation


Author(s):  ZHANG Jian, GAO Nian-fa

Affiliation(s):  Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China

Corresponding email(s):   zj96sk@163.com

Key Words:  Response surface methodology, Torulopsis glabrata, Pyruvic acid, Fermentation, Medium optimization


ZHANG Jian, GAO Nian-fa. Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation[J]. Journal of Zhejiang University Science B, 2007, 8(2): 98~104.

@article{title="Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation",
author="ZHANG Jian, GAO Nian-fa",
journal="Journal of Zhejiang University Science B",
volume="8",
number="2",
pages="98~104",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.B0098"
}

%0 Journal Article
%T Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation
%A ZHANG Jian
%A GAO Nian-fa
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 2
%P 98~104
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0098

TY - JOUR
T1 - Application of response surface methodology in medium optimization for pyruvic acid production of Torulopsis glabrata TP19 in batch fermentation
A1 - ZHANG Jian
A1 - GAO Nian-fa
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 2
SP - 98
EP - 104
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0098


Abstract: 
response surface methodology (RSM) was used to optimize the fermentation medium for enhancing pyruvic acid production by Torulopsis glabrata TP19. In the first step of optimization, with Plackett-Burman design, ammonium sulfate, glucose and nicotinic acid were found to be the important factors affecting pyruvic acid production significantly. In the second step, a 23 full factorial central composite design and RSM were applied to determine the optimal concentration of each significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the critical components were obtained as follows: ammonium sulfate 0.7498 (10.75 g/L), glucose 0.9383 (109.38 g/L) and nicotinic acid 0.3633 (7.86 mg/L) with a predicted value of maximum pyruvic acid production of 42.2 g/L. Under the optimal conditions, the practical pyruvic acid production was 42.4 g/L. The determination coefficient (R2) was 0.9483, which ensures adequate credibility of the model. By scaling up fermentation from flask to jar fermentor, we obtained promising results.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Adinarayana, K., Ellaiah, P., 2002. Response surface optimization of the critical medium components for this production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Pharm. Sci., 5(3):272-227.

[2] Ai, M., Ohdan, K., 1995. Formation of pyruvic acid by oxidative dehydrogenation of lactic acid. Chem. Lett., 24(5):405.

[3] Burdick, B.A., Schaeffer, J.R., 1987. Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett., 9(4):253-258.

[4] Causey, T.B., Shanmugam, K.T., Yomano, L.P., Inram, L.O., 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA, 101(8):2235-2240.

[5] Chakravarti, R., Sahai, V., 2002. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem., 38(4):481-486.

[6] Conley, W.C., 1984. Computer Optimization Techniques. Petrocelli Books, Princeton, NJ, p.147-163.

[7] Eisenberg, A., Seip, J.E., Gavagan, J.E., Payne, M.S., Anton, D.L., DiCosimo, R., 1997. Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Catal. B: Enzymatic, 2(4-5):223-232.

[8] Ghanem, N.B., Yusef, H.H., Mahrouse, H.K., 2000. Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour. Technol., 73(2):113-121.

[9] Gokhade, D.V., Patil, S.G., Bastawde, K.B., 1991. Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biochem. Biotechnol., 30(2):99-109.

[10] Hujanen, M., Linko, S., Linko, Y.Y., Leisola, M., 2001. Optimization of media and cultivation conditions for L. (+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol., 56(1-2):126-130.

[11] Izumi, Y., Matsumura, Y., Tani, Y., Yamada, H., 1982. Pyruvic acid production from 1,2-propanediol by thiamin-requiring Acinetobacter sp. 80-M. Agric. Biol. Chem., 46(3):2673-2679.

[12] Khuri, A.I., Cornell, J.A., 1987. Response Surfaces: Design and Analyses. Dekker, New York.

[13] Lhomme, B., Roux, J.C., 1991. Utilization of experimental designs for optimization of Rhizopus arrhizus culture. Bioresour. Technol., 35(3):301-312.

[14] Li, Y., Chen, J., Lun, S.Y., 2001a. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl. Microbiol. Biotechnol., 55(6):680-685.

[15] Li, Y., Chen, J., Lun, S.Y., 2001b. Biotechnological production of pyruvic acid. Appl. Microbiol. Biotechnol., 57(4):451-459.

[16] Mahmoudian, M., Noble, D., Drake, C.S., Middleton, R.F., Montgomery, D.S., Picrcey, J.E., Ramlakhan, D., Todd, M., Dawson, M., 1997. An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb. Technol., 20(5):393-400.

[17] Miyata, R., Yonehara, T., 1996. Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J. Ferment. Bioeng., 82(5):475-479.

[18] Ogawa, J., Soong, C.L., Masashi, I., Shimizu, S., 2001. Enzymatic production of pyruvate from fumarate—an application of microbial cyclic-imide-transforming pathway. J. Mol. Catal. B: Enzymatic, 11(4-6):355-359.

[19] Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I., Kim, S.W., 2002. Xylanase production in solid state fermertation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol., 58(6):761-766.

[20] Plackett, R.L., Burman, J.P., 1946. The design of optimum multifactorial experiments. Biometrika, 33(4):305-325.

[21] Puri, S., Beg, Q.K., Gupta, R., 2002. Optimization of alkaline protease from Bacillus sp. by response surface methology. Curr. Microbiol., 44(4):286-290.

[22] Rama Mohan Reddy, P., Reddy, G., Seenayya, G., 1999. Production of thermostble β-amylase and pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: screening of nutrients using Plackett-Burman design. Bioprocess Eng., 21(2):175-179.

[23] Rosche, B., Leksawasdi, N., Sandford, V., Breuer, M., Hauer, B., Rogers, P., 2002. Enzymatic (R)-phenylacetylcarbinol production in benzaldehyde emulsions. Appl. Microbiol. Biotechnol., 60(1-2):94-100.

[24] Roufs, J.B., 1996. Pyruvate: does it amp endurance and burn more fat? Muscle Fitness, 57(2):195-197.

[25] Sadhukhan, A.K., Ramana Murthy, M.V., Ajaya Kumar, R., Mohan, E.V.S., Vandana, G., Bhar, C., Venkateswara Rao, K., 1999. Optimization of mycophenolic acid production in solid-state fermentation using response surface methodology. J. Ind. Microbiol. Biotechnol., 22(1):33-38.

[26] Schinschel, C., Simon, H., 1993. Preparation of pyruvate from (R)-lactate with Proteus species. J. Biotechnol., 31(2):191-203.

[27] Sunitha, I., Subba Rao, M.V., Ayyanna, C., 1998. Optimization of medium constituents and fermentation conditions for the production of L-glutamic acid by the co-immobilized whole cells of Micrococcus glutamicus and Pseudomonas reptilivora. Bioprocess Eng., 18(5):353-359.

[28] Tsujino, T., Ohigashi, S., Sugiyama, S., Kawashiro, K., Hayashi, H., 1992. Oxidation of propylene glycol and lactic acid to pyruvic acid in aqueous phase catalyzed by lead modified alladium-on-carbon and related systems. J. Mol. Catal., 71(1):25-35.

[29] Uchio, R., Kikuchi, K., Hirose, Y., 1976. Process for Producing Pyruvic Acid by Fermentation. US Patent, No. 3 993 543.

[30] Yokota, A., Schimizu, H., Terasawa, Y., Takaoka, N., 1994. Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl. Microbiol. Biotechnol., 41(6):638-643.

[31] Yonehara, T., Miyata, R., 1994. Fermentative production of pyruvate from glucose by Torulopsis glabrata. J. Ferment. Bioeng., 78(2):155-159.

[32] Yu, X., Hallet, S.G., Sheppard, J., Watson, A.K., 1997. Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores. Appl. Microbiol. Biotechnol., 47(3):301-305.

[33] Zhang, J., Marcin, C., Shifflet, M.A., Salmon, P., Brix, T., Greasham, R., Buokland, B., Chartrain, M., 1996. Development of a defined medium fermentation process for physotigmine production by Streptomyces griseofuscus. Appl. Microbiol. Biotechnol., 44(5):568-575.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE