Full Text:   <1403>

CLC number: TS2

On-line Access: 

Received: 2007-07-23

Revision Accepted: 2007-08-17

Crosschecked: 0000-00-00

Cited: 3

Clicked: 2868

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.10 P.771~776


Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture


Affiliation(s):  Department of Food Research, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico

Corresponding email(s):   cag13761@mail.uadec.mx

Key Words:  Tannase, Gallic acid, Polyurethane matrix support, Solid state culture, Aspergillus niger Aa-20

Share this article to: More <<< Previous Article|

TREVIŇO Lucia, CONTRERAS-ESQUIVEL Juan C., RODRÍGUEZ-HERRERA Raul, AGUILAR Cristóbal Noé. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture[J]. Journal of Zhejiang University Science B, 2007, 8(10): 771~776.

@article{title="Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture
%A O Lucia
%A bal Noé
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 10
%P 771~776
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0771

T1 - Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture
A1 - O Lucia
A1 - AGUILAR Cristó
A1 - bal Noé
A1 -
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 10
SP - 771
EP - 776
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0771

The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Aguilar, C.N., 2000. Induction and Repression of Synthesis of Tannase from Aspergillus niger Aa/20 in Submerged and Solid State Cultures. PhD Thesis, Metropolitan Autonomous University, Mexico (in Spanish).

[2] Aguilar, C.N., Gutiérrez-Sánchez, G., 2001. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Tech. Int., 7(5):373-382.

[3] Aguilar, C.N., Augur, C., Favela-Torres, E., Viniegra-González, G., 2001a. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc. Biochem., 36(6):565-570.

[4] Aguilar, C.N., Augur, C., Favela-Torres, E., Viniegra-González, G., 2001b. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol., 26(5):296-302.

[5] Aguilar, C.N., Favela-Torres, E., Viniegra-González, G., Augur, C., 2002. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl. Biochem. Biotechnol., 102-103(1-6):407-414.

[6] Aguilar, C.N., Rodríguez-Herrera, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragán, L.A., Ramírez-Coronel, A., Contreras-Esquivel, J.C., 2007. Microbial tannases: advances and perpectives. Appl. Microbiol. Biotechnol., 76(1):47-59.

[7] Aoki, K., Shinke, R., Nishira, H., 1976. Purification and some properties of yeast tannase. Agric. Biol. Chem., 40(1):79-85.

[8] Belmares, R., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Ramírez-Coronel, A., Aguilar, C.N., 2004. Microbial production of tannase: an enzyme with potential use in food industry. Lebensmit. Wiss. und-Technol., 37(8):857-864.

[9] Bhat, T.K., Singh, B., Sharma, O.P., 1998. Microbial degradation of tannins—a current perspective. Biodegradation, 9(5):343-357.

[10] Cerda-Montalvo, M.L., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Aguilar, C.N., 2005. Glucose diffusion on support for solid state fermentation and its influence on tannase production profiles. Int. J. Chem. Reactor Eng., 3(5):1-10.

[11] Córdova-López, J., Gutierrez-Rojas, M., Huerta, S., Saucedo-Castañeda, G., Favela-Torres, E., 1996. Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation. Biotechnol. Tech., 10(1):1-6.

[12] García-Nájera, J.A., Medina, A., Castro, Y., Reyes-Vega, M.L., Prado-Barragán, L.A., Rodríguez-Herrera, R., Aguilar, C.N., 2002. Accumulation and Recovery of Gallic Acid in a Submerged Culture of Aspergillus niger Aa-20. IFT Annual Meeting, Anaheim, CA, USA, p.25.

[13] Georgiou, G., Shuler, M.L., 1986. A computer-model for the growth and differentiation of a fungal colony on solid substrate. Biotechnol. Bioeng., 28(3):405-416.

[14] Kar, B., Banerjee, R., 2000. Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J. Ind. Microbiol. Biotechnol., 25(1):29-38.

[15] Kar, B., Banerjee, R., Bhattacharyya, B.C., 1999. Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol., 23(3):173-177.

[16] Khanbabaee, K., van Ree, T., 2001. Tannins: classification and definition. Nat. Prod. Rep., 18(6):641-649.

[17] Lekha, P.K., Lonsane, B.K., 1994. Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL-104 in solid-state, liquid surface and submerged fermentations. Proc. Biochem., 29(6):497-503.

[18] Lekha, P.K., Lonsane, B.K., 1997. Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol., 44(9/17):215-260.

[19] Mitchell, D.A., Do, D.D., Greenfield, P.F., Doelle, H.W., 1991. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state system. Biotechnol. Bioeng., 38(4):353-362.

[20] Mitchell, D.A., von Meien, O.F., Krieger, N., Dalsenter, F.D.H., 2004. A review of recent developments in modelling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem. Eng. J., 17(1):15-26.

[21] Nagel, E.J., van As, H., Tramper, J., Rinzema, A., 2002. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae. Biotechnol. Bioeng., 79(6):653-663.

[22] Olsson, S., 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxxysporum as quantified by image analysis. Exp. Mycol., 18(1):33-47.

[23] Oostra, J., le Comte, E.P., van den Heuvel, J.C., Tramper, J., Rinzema, A., 2001. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol. Bioeng., 75(1):13-24.

[24] Rahardjo, Y.S., Weber, F.J., le Comte, E.P., Tramper, J., Rinzema, A., 2002. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol. Bioeng., 78(5):539-544.

[25] Rajagopalan, S., Modak, J.M., 1995a. Evaluation of relative growth limitation due to depletion of glucose and oxygen during fungal growth on a spherical solid particle. Chem. Eng. Sci., 50(5):803-811.

[26] Rajagopalan, S., Modak, J.M., 1995b. Modelling of heat and mass transfer for solid-state fermentation process in tray bioreactor. Bioproc. Biosyst. Eng., 13(3):161-169.

[27] Sharma, S., Bhat, T.K., Dawra, R.K., 2000. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem., 279(1):85-89.

[28] Viniegra-González, G., Favela-Torres, E., 2006. Why solid-state fermentation seems to be resistant to catabolite repression. Food Technol. Biotechnol., 44(3):397-406.

[29] Viniegra-González, G., Favela-Torres, E., Aguilar, C.N., Romero-Gomez, S.J., Diaz-Godinez, G., Augur, C., 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J., 13(2-3):157-167.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE