CLC number: TM911.4
On-line Access:
Received: 2007-11-12
Revision Accepted: 2008-02-27
Crosschecked: 0000-00-00
Cited: 6
Clicked: 7002
Jun LI, Ying-wei KANG, Guang-yi CAO, Xin-jian ZHU, Heng-yong TU, Jian LI. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method[J]. Journal of Zhejiang University Science A, 2008, 9(7): 961-969.
@article{title="Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method",
author="Jun LI, Ying-wei KANG, Guang-yi CAO, Xin-jian ZHU, Heng-yong TU, Jian LI",
journal="Journal of Zhejiang University Science A",
volume="9",
number="7",
pages="961-969",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720054"
}
%0 Journal Article
%T Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method
%A Jun LI
%A Ying-wei KANG
%A Guang-yi CAO
%A Xin-jian ZHU
%A Heng-yong TU
%A Jian LI
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 7
%P 961-969
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720054
TY - JOUR
T1 - Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method
A1 - Jun LI
A1 - Ying-wei KANG
A1 - Guang-yi CAO
A1 - Xin-jian ZHU
A1 - Heng-yong TU
A1 - Jian LI
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 7
SP - 961
EP - 969
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720054
Abstract: A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.
[1] Achenbach, E., 1994. 3D and time-dependent simulation of a planar solid oxide fuel cell stack. Journal of Power Sources, 49(1-3):333-348.
[2] Aguiar, P., Chadwick, D., Kershenbaum, L., 2002. Modelling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science, 57(10):1665-1677.
[3] Aguiar, P., Adjiman, C.S., Brandon, N.P., 2004. Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. Journal of Power Sources, 138(1-2):120-136.
[4] Al-Baghdadi, M.A.R.S., Al-Janabi, H.A.K.S., 2007. Optimization study of a PEM fuel cell performance using 3D multi-phase computational fluid dynamics model. Journal of Zhejiang University SCIENCE A, 8(2):285-300.
[5] Bose, T.K., 1988. Computational Fluid Dynamics. Wiley Eastern Limited, New Delhi, p.6.
[6] Chan, S.H., Low, C.F., Ding, O.L., 2002. Energy and exergy analysis of a simple solid-oxide fuel cell power system. Journal of Power Sources, 103(2):188-200.
[7] Chan, S.H., Ho, H.K., Tian, Y., 2003. Multi-level modeling of SOFC-gas turbine hybrid system. International Journal Hydrogen Energy, 28(8):889-900.
[8] Chen, X.J., Liu, Q.L., Chan, S.H., Brandon, N.P., Khor, K.A., 2007a. High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane. Electrochemistry Communications, 9(4):767-772.
[9] Chen, X.J., Liu, Q.L., Chan, S.H., Brandon, N.P., Khor, K.A., 2007b. Sulfur tolerance and hydrocarbon stability of La0.75Sr0.25Cr0.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization. Journal of the Electrochemical Society, 154(11):B1206-B1210.
[10] Ferziger, J.H., Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer-Verlag, New York, p.10.
[11] Georges, S., Parrour, G., Henault, M., Fouletier, J., 2006. Gradual internal reforming of methane: a demonstration. Solid State Ionics, 177(19-25):2109-2112.
[12] He, W., Chen, Q., 1998. 3D simulation of a molten carbonate fuel cell stack under transient conditions. Journal of Power Sources, 73(2):182-192.
[13] Hu, G.L., Fan, J.R., Chen, S., Liu, Y.J., Cen, K.F., 2004. 3D numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. Journal of Power Sources, 136(1):1-9.
[14] Jiang, W., Fang, R.X., Khan, J.A., Dougal, R.A., 2006. Parameter setting and analysis of a dynamic tubular SOFC model. Journal of Power Sources, 162(1):316-326.
[15] Larminie, J., Dicks, A., 2000. Fuel Cell Systems Explained. Wiley, New York, p.164.
[16] Vernoux, P., Guindet, J., Kleitz, M., 1998. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. Journal of the Electrochemical Society, 145(10):3487-3492.
[17] Xu, J.G., Froment, G.F., 1989. Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE Journal, 35(1):88-96.
[18] Zitouni, B., Ben, Moussa, H., Oulmi, K., 2007. Studying on the increasing temperature in IT-SOFC: Effect of heat sources. Journal of Zhejiang University SCIENCE A, 8(9):1500-1504.
Open peer comments: Debate/Discuss/Question/Opinion
<1>