Full Text:   <1544>

CLC number: TN92

On-line Access: 2009-08-27

Received: 2009-03-26

Revision Accepted: 2009-07-27

Crosschecked: 2009-07-30

Cited: 2

Clicked: 3037

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2009 Vol.10 No.10 P.1383~1388


Finite time-horizon Markov model for IEEE 802.11e

Author(s):  Cheng KUAN, Kaharudin DIMYATI

Affiliation(s):  Department of Electrical and Electronic Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Corresponding email(s):   cy@royal.net

Key Words:  Wireless local area networks (WLANs), Markov, IEEE 802.11, Transient analysis

Share this article to: More |Next Article >>>

Cheng KUAN, Kaharudin DIMYATI. Finite time-horizon Markov model for IEEE 802.11e[J]. Journal of Zhejiang University Science A, 2009, 10(10): 1383~1388.

@article{title="Finite time-horizon Markov model for IEEE 802.11e",
author="Cheng KUAN, Kaharudin DIMYATI",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Finite time-horizon Markov model for IEEE 802.11e
%A Cheng KUAN
%A Kaharudin DIMYATI
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 10
%P 1383~1388
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0920170

T1 - Finite time-horizon Markov model for IEEE 802.11e
A1 - Cheng KUAN
A1 - Kaharudin DIMYATI
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 10
SP - 1383
EP - 1388
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0920170

We model wireless local area network channel utilization over a finite interval through a finite time-horizon markov (FTHM) model. By accurately capturing time-varying utilization, the FTHM model allows for generally distributed transmission-opportunity (TXOP) duration, which most existing models do not account for. An absorbing state is introduced to limit the lifetime of the counting process, resulting in a non-ergodic markov chain that is solved via transient analysis. The model predictions for time-varying utilization are validated by simulation with errors of no more than 0.1% after eight beacon intervals. Moreover, we show that the FTHM model prediction error is below 4% for Poisson distributed and uniformly distributed TXOP durations.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Coenen, T.J.M., van den Berg, J.L., Boucherie, R.J., 2008. Analysis of a Polling System Modeling QoS Differentiation in WLANs. Proc. 3rd Int. Conf. on Performance Evaluation Methodologies and Tools, p.1-8.

[2] Garroppo, R.G., Tavanti, L., Lucetti, S., Giordano, S., 2007. Extension and Application of the Network Utilization Characteristic Metric to IEEE 802.11e in IEEE 802.11e WLAN Networks. Proc. Int. Conf. on Communication, p.1766-1771.

[3] Gozalvez, D., Monserrat, J.F., Calabuig, D., Gozalvez, J., 2007. Policy-based channel access mechanism selection for QoS provision in IEEE 802.11e. IEEE Vehic. Technol. Mag., 2(3):29-34.

[4] Hu, J., Min, G., Woodward, M.E., Jia, W., 2008. A Comprehensive Analytical Model for IEEE 802.11e QoS Differentiation Schemes under Unsaturated Traffic Loads. Proc. Int. Conf. on Communication, p.241-245.

[5] IEEE Std 802.11, 2007. IEEE Standard for Information Technology—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, p.C1-1184.

[6] IEEE Std 802.11-k, 2008. IEEE Standard for Information Technology—Part 11. Amendment 1: Radio Resource Measurement of Wireless LANs, p.C1-222.

[7] Karagiannis, T., Molle, M., Faloutsos, M., Broido, A., 2004. A Nonstationary Poisson View of Internet Traffic. Proc. 23rd Conf. on IEEE Computer and Communications Societies, 3:1558-1569.

[8] Lee, J.Y., Lee, H.S., 2009. A performance analysis model for IEEE 802.11e EDCA under saturation condition. IEEE Trans. Commun., 57(1):56-63.

[9] Lim, J.H., Yun, J.H., Seo, S.W., 2008. Throughput Model of IEEE 802.11e EDCF with Consideration of Delay Bound Constraint. Proc. Int. Conf. on Communication, p.235-240.

[10] Panaousis, E.A., Frangoudis, P.A., Ververidis, C.N., Polyzos, G.C., 2008. Optimizing the Channel Load Reporting Process in IEEE 802.11k-enabled WLANs. Proc. 16th IEEE LANMAN, p.37-42.

[11] Sharon, O., Altman, E., 2001. An efficient polling MAC for wireless LANs. IEEE/ACM Trans. Networking, 9(4):439-451.

[12] Sikdar, B., 2005. Delay Analysis of IEEE 802.11 PCF MAC Based Wireless Networks. Proc. IEEE GLOBECOM, 1:556-560.

[13] Xu, D.X., Sakurai, T., Vu, H.L., 2009. An access delay model for IEEE 802.11e EDCA. IEEE Trans. Mob. Comput., 8(2):261-275.

[14] Zhang, W., Sun, J., Liu, J., Zhang, H.B., 2007. Performance analysis of IEEE 802.11e EDCA in wireless LANs. J. Zhejiang Univ. Sci. A, 8(1):18-23.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE