Full Text:   <2878>

CLC number: TB303

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2011-01-28

Cited: 3

Clicked: 5282

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2011 Vol.12 No.3 P.177-182

http://doi.org/10.1631/jzus.A1000269


Mechanical and electronic properties of diamondlike BC5


Author(s):  Qing Zhang, Shi-ming Wang, Yong-cheng Liang

Affiliation(s):  Xinzhou Teachers University, Xinzhou 034000, Shanxi, China, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China, State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Corresponding email(s):   ycliang@shou.edu.cn

Key Words:  Mechanical properties, Metallicity, Diamondlike BC5


Qing Zhang, Shi-ming Wang, Yong-cheng Liang. Mechanical and electronic properties of diamondlike BC5[J]. Journal of Zhejiang University Science A, 2011, 12(3): 177-182.

@article{title="Mechanical and electronic properties of diamondlike BC5",
author="Qing Zhang, Shi-ming Wang, Yong-cheng Liang",
journal="Journal of Zhejiang University Science A",
volume="12",
number="3",
pages="177-182",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000269"
}

%0 Journal Article
%T Mechanical and electronic properties of diamondlike BC5
%A Qing Zhang
%A Shi-ming Wang
%A Yong-cheng Liang
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 3
%P 177-182
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000269

TY - JOUR
T1 - Mechanical and electronic properties of diamondlike BC5
A1 - Qing Zhang
A1 - Shi-ming Wang
A1 - Yong-cheng Liang
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 3
SP - 177
EP - 182
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000269


Abstract: 
The structural properties, mechanical behavior, and electronic structure of the newly developed diamondlike BC5 (d-BC5) was investigated using density functional theory (DFT) calculations. The results indicate that d-BC5 has great bulk modulus of 393 GPa, large shear modulus of 398 GPa, and high hardness of 62 Pa, and thus support the fact that d-BC5 is an ultra-incompressible and superhard material. Remarkably, the superhard d-BC5 exhibits metallic features. Furthermore, the trend that the mechanical behavior falls with the increase of boron content was revealed. The combination of huge stiffness, high hardness, and good metallicity makes series of diamondlike BCx (d-BCx) valid for wider applications in comparison with pure diamond.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Born, M., Huang, K., 1956. Dynamical Theory of Crystal Lattices. Clarendon, Oxford.

[2]Calandra, M., Mauri, F., 2008. High-Tc superconductivity in superhard diamondlike BC5. Physical Review Letters, 101(1):016401-4.

[3]Ekimov, E.A., Sidorov, V.A., Bauer, E.D., Mel′nik, N.N., Curro, N.J., Thompson, J.D., Stishov, S.M., 2004. Super-conductivity in diamond. Nature, 428(6982):542-545.

[4]Fang, Z., Terakura, K., 2002. Structural distortion and magnetism in transition metal oxides: crucial roles of orbital degrees of freedom. Journal of Physics Condensed Matter, 14(11):3001-3014.

[5]Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., Tian, Y., 2003. Hardness of covalent crystals. Physical Review Letters, 91(1):015502-4.

[6]Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A., 2002. High carrier mobility in single-crystal plasma-deposited diamond. Science, 297(5587):1670-1672.

[7]Jiang, C., Lin, Z., Zhang, J., Zhao, Y., 2009a. First-principles prediction of mechanical properties of gamma-boron. Applied Physics Letters, 94(19):191906-3.

[8]Jiang, C., Lin, Z., Zhao, Y., 2009b. Superhard diamondlike BC5: a first-principles investigation. Physical Review B, 80(18):184101-6.

[9]Jiang, C., Lin, Z., Zhao, Y., 2009c. Thermodynamic and mechanical stabilities of tantalum nitride. Physical Review Letters, 103(18):185501-4.

[10]Jones, L.E., Thrower, P.A., 1991. Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior. Carbon, 29(2):251-269.

[11]Lazar, P., Podloucky, R., 2009. Mechanical properties of superhard BC5. Applied Physics Letters, 94(25):251904-3.

[12]Liang, Y., Zhang, B., 2007. Mechanical and electronic properties of superhard ReB2. Physical Review B, 76(13):132101-4.

[13]Liang, Y., Zhang, B., Zhao, J., 2008a. Electronic structure and mechanical properties of osmium borides, carbides and nitrides from first principles. Solid State Communications, 146(11-12):450-453. [doi:10.1016/j.ssc.2008.04.006]

[14]Liang, Y., Zhao, J., Zhang, B., 2008b. Mechanical properties and structural identifications of cubic TiO2. Physical Review B, 77(9):094126-5.

[15]Liang, Y., Li, A., Zhao, J., Zhang, W., 2009a. Designing superhard materials by incorporating boron into heavy transition metals. Modern Physics Letters B, 23(10):1281-1290.

[16]Liang, Y., Li, C., Guo, W., Zhang, W., 2009b. First-principles investigation of technetium carbides and nitrides. Physical Review B, 79(2):024111-024115.

[17]Liang, Y., Zhang W., Zhao, J., Chen, L., 2009c. Superhardness, stability, and metallicity of diamondlike BC5: density functional calculations. Physical Review B, 80(11):113401-4.

[18]Lowther, J.E., 2005. Potential super-hard phases and the stability of diamond-like boron-carbon structures. Journal of Physics Condensed Matter, 17(21):3221-3229.

[19]Nkambule, S.M., Lowther, J.E., 2010. Crystalline and random “diamond-like” boron-carbon structures. Solid State Communications, 150(1-2):133-136.

[20]Occelli, F., Loubeyre, P., Letoullec, R., 2003. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature Materials, 2(3):151-154.

[21]Perdew, J.P., Wang, Y, 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23):13244-13249.

[22]Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865-3868.

[23]Rivadulla, F., Bañobre-López, M., Quintela, C.X., Piñeiro, A., Pardo, V., Baldomir, D., López-Quintela, M.A., Rivas, J., Ramos, C.A., Salva, H., et al., 2009. Reduction of the bulk modulus at high pressure in CrN. Nature Materials, 8(12):947-951.

[24]Šimůnek, A., Vackář, J., 2006. Hardness of covalent and ionic crystals: first-principle calculations. Physical Review Letters, 96(8):085501-4.

[25]Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Godec, Y.L., Mezouar, M., 2009. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Physical Review Letters, 102(1):015506-4.

[26]Umemoto, K., Wentzcovitch, R.M., Saito, S., Miyake, T., 2010. Body-centered tetragonal C4: a viable sp3 carbon allotrope. Physical Review Letters, 104(12):125504-4.

[27]Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11):7892-7895.

[28]Wang, Y.J., Wang, C.Y., 2009. Mechanical properties and electronic structure of superhard diamondlike BC5: a first-principles study. Journal of Applied Physics, 106(4):043513-5.

[29]Yao, Y., Tse, J.S., Klug, D.D., 2009. Crystal and electronic structure of superhard BC5: first-principles structural optimizations. Physical Review B, 80(9):094106-6.

[30]Zhang, R.F., Veprek, S., Argon, A.S., 2009. Effect of nanometer-sized grains on the superhardness of c-BC5: a first-principles study. Physical Review B, 80(23):233401-4.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE