CLC number: TQ038.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-04-05
Cited: 3
Clicked: 6661
Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number[J]. Journal of Zhejiang University Science A, 2012, 13(5): 361-374.
@article{title="Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number",
author="Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang",
journal="Journal of Zhejiang University Science A",
volume="13",
number="5",
pages="361-374",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100338"
}
%0 Journal Article
%T Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number
%A Xiao-bin Zhang
%A Wei Zhang
%A Xue-jun Zhang
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 5
%P 361-374
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100338
TY - JOUR
T1 - Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number
A1 - Xiao-bin Zhang
A1 - Wei Zhang
A1 - Xue-jun Zhang
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 5
SP - 361
EP - 374
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100338
Abstract: The volume of fluid (VOF) formulation is applied to model the combustion process of a single droplet in a high-temperature convective air free stream environment. The calculations solve the flow field for both phases, and consider the droplet deformation based on an axisymmetrical model. The chemical reaction is modeled with one-step finite-rate mechanism and the thermo-physical properties for the gas mixture are species and temperature dependence. A mass transfer model applicable to the VOF calculations due to vaporization of the liquid phases is developed in consideration with the fluctuation of the liquid surface. The model is validated by examining the burning rate constants at different convective air temperatures, which accord well with experimental data of previous studies. Other phenomena from the simulations, such as the transient history of droplet deformation and flame structure, are also qualitatively accordant with the descriptions of other numerical results. However, a different droplet deformation mechanism for the low Reynolds number is explained compared with that for the high Reynolds number. The calculations verified the feasibility of the VOF computational fluid dynamics (CFD) formulation as well as the mass transfer model due to vaporization.
[1]Abramzon, B., Sirignano, W.A., 1989. Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer, 32(9):1605-1618.
[2]Abramzon, B., Sazhin, S., 2005. Droplet vaporization model in the presence of thermal radiation. International Journal of Heat and Mass Transfer, 48(9):1868-1873.
[3]Amable, L., Forman, A.W., 1993. Fundamental Aspects of Combustion. Oxford University Press, New York, Oxford.
[4]Brennen, C.E., 2005. Fundamentals of Multiphase Flow. Cambridge University Press.
[5]Chiang, C.H., Raju, M.S., Sirignano, W.A., 1992. Numerical analysis of convecting vaporizing fuel droplet with variable properties. International Journal of Heat and Mass Transfer, 35(5):1307-1324.
[6]Cuoci, A., Mehl, M., Ferraris, G.B., Faravelli, T., Manca, D., Ranzi, E., 2005. Autoignition and burning rates of fuel droplets under microgravity. Combustion and Flame, 143(3):211-226.
[7]Dash, S.K., Som, S.K., 1991. Ignition and combustion of liquid fuel droplet in a convective medium. Journal of Energy Resources Technology, 113(3):165-170.
[8]Dgheim, J., Chesneau, X., Pietri, L., Zeghmati, B., 2002. Heat and mass transfer correlations for liquid droplet of a pure fuel in combustion. Heat and Mass Transfer, 38(7-8):543-550.
[9]Dietrich, D.L., Struk, P.M., Ikegami, M., Xu, G., 2005. Single droplet combustion of decane in microgravity: experiments and numerical modeling. Combustion Theory and Modelling, 9(4):569-585.
[10]Fluent, 2006. Fluent 6.3 Documents. Fluent Incorporation.
[11]Hardt, S., Wondra, F., 2008. Evaporation model of interfacial flows based on a continuum-field representation of the source terms. Journal of Computational Physics, 227(11):5871-5895.
[12]Haywood, R.J., Renksizbulut, M., Raithby, G.D., 1994a. Numerical solution of deforming evaporating droplets at intermediate Reynolds numbers. Numerical Heat Transfer, Part A: Applications, 26(3):253-272.
[13]Haywood, R.J., Renksizbulut, M., Raithby, G.D., 1994b. Transient deformation and evaporation of droplets at intermediate Reynolds numbers. International Journal of Heat and Mass Transfer, 37(9):1401-1409.
[14]Jog, M.A., Ayyaswamy, P.S., Cohen, I.M., 1996. Evaporation and combustion of a slowly moving liquid fuel droplet: higher-order theory. Journal of Fluid Mechanics, 307:135-165.
[15]Kunkelmann, C., Stephan, P., 2009. CFD simulation of boiling flows using the volume-of-fluid method within OPENFOAM. Numerical Heat Transfer, Part A: Applications, 56(8):631-646.
[16]Lage, P.L.C., Range, R.H., 1993. Single droplet vaporization including thermal radiation absorption. Journal of Thermophysics and Heat Transfer, 7(3):502-508.
[17]Lior, N., Sarmiento-Darkin, W., Al-Sharqawi, H.S., 2006. The exergy fields in transport processes: Their calculation and use. Energy, 31(5):553-578.
[18]Madooglu, K., Karagozian, A.R., 1993. Burning of a spherical fuel droplet in a uniform flowfield with exact property variation. Combustion and Flame, 94(3):321-329.
[19]Reid, R.C., 1987. The Properties of Gases and Liquids, 4th Edition. McGraw-Hill Inc, p.167-172.
[20]Renksizbulut, M., Yuen, M.C., 1983. Numerical study of droplet evaporation in a high-temperature stream. Journal of Heat Transfer, 105(2):389-397.
[21]Renksizbulut, M., Haywood, R.J., 1988. Transient droplet evaporation with variable properties and internal circulation at intermediate Reynolds numbers. International Journal of Multiphase Flow, 14(2):189-202.
[22]Shaygan, N., Prakash, S., 1995. Droplet ignition and combustion including liquid-phase heating. Combustion and Flame, 102(1-2):1-10.
[23]Strotos, G., Gavaises, M., Theodorakakos, A., Berleges, G., 2008. Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers. International Journal of Heat and Mass Transfer, 51(7-8):1516-1529.
[24]Talley, D.G., Yao, S.C., 1988. A Semi-Empirical Approach to Thermal and Composition Transients inside Vaporizing Fuel Droplets. Symposium (International) on Combustion, 21(1):609-616.
[25]Tanguy, S., Menard, T., Berlemont, A., 2007. A level set method for vaporizing two-phase flows. Journal of Computational Physics, 221(2):837-853.
[26]Westbrook, C.K., Dryer, F.L., 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 27(1-2):31-43.
[27]Wu, G., Sirigano, W.A., 2010. Transient burning of a convective fuel droplet. Combustion and Flame, 157(5):970-981.
[28]Xu, G.W., Ikegami, M., Honma, S., Ikeda, K., Ma, X.X., 2003. Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss. International Journal of Heat and Mass Transfer, 46(7):1155-1169.
[29]Xu, G.W., Ikegami, M., Honma, S., Ikeda, K., Dietrich, D.L., 2004. Interactive influence of convective flow and initial droplet diameter on isolated droplet burning rate. International Journal of Heat and Mass Transfer, 47(8-9):2029-2035.
Open peer comments: Debate/Discuss/Question/Opinion
<1>