References
[1] Akcay, H., Turkay, S., 2009. Influence of tire damping on mixed
H
2/
H
∞ synthesis of half-car active suspensions.
Journal of Sound and Vibration, 322(1-2):15-28.
[2] Astrom, K.J., Hagglund, T., 2001. The future of PID control.
Control Engineering Practice, 9(11):1163-1175.
[3] Astrom, K.J., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control.
Journal of Process Control, 14(6):635-650.
[4] Buckner, G.D., Schuetze, K.T., Beno, J.H., 2000. Active Vehicle Suspension Control Using Intelligent Feedback Linearization.
Proceedings of the American Control Conference, 6:4014-4018.
[5] Cetin, S., Akkaya, A.V., 2010. Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system.
Nonlinear Dynamics, 61:465-476.
[6] Chantranuwathana, S., Peng, H., 2004. Adaptive robust force control for vehicle active suspension.
International Journal of Adaptive Control and Signal Processing, 18(2):83-102.
[7] Chen, H., Liu, Z.Y., Sun, P.Y., 2005. Application of constrained
H
∞ control to active suspension systems on half-car models.
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 127(3):345-354.
[8] Chien, T.L., Chen, C.C., Chiu, H.C., Cheng, H.W., Chen, Y.C., 2008. Almost disturbance decoupling control of nonlinear MIMO uncertain system and application to half-car active suspension system.
International Journal of Vehicle Design, 46(4):367-392.
[9] Dahunsi, O.A., Pedro, J.O., 2010. Neural network-based identification and approximate predictive control of a servo-hydraulic vehicle suspension system.
Engineering Letters, 18(4):357-368.
[10] Dahunsi, O.A., Pedro, J.O., Nyandoro, O.T., 2009. Neural Network-based Model Predictive Control of a Servo-hydraulic Vehicle Suspension System.
, Proceedings of the International IEEE Africon, 1-6. :1-6.
[11] Dahunsi, O.A., Pedro, J.O., Nyandoro, O.T., 2010. System identification and neural network based PID control of servo-hydraulic vehicle suspension system.
SAIEE Africa Research Journal, 101(3):93-105.
[12] Du, H., Zhang, N., 2007.
H
∞ control of active vehicle suspensions with actuator time delay.
Journal of Sound and Vibration, 301(1-2):236-252.
[13] Du, H., Zhang, N., 2009. Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint.
IEEE Transactions on Fuzzy Systems, 17(2):343-356.
[14] Du, H., Zhang, N., 2009. Static output feedback control for electrohydraulic active suspensions via T-S fuzzy model approach.
Journal of Dynamic Systems, Measurement and Control, Transactions of ASME, 131(5):1-11.
[15] Du, H., Zhang, N., 2010. Robust active suspension design subject to vehicle inertial parameter variations.
International Journal of Automation and Computing, 7(4):419-427.
[16] Ekoru, J.E.D., Dahunsi, O.A., Pedro, J.O., 2011. PID Control of a Nonlinear Half-car Active Suspension System via Force Feedback.
, Proceedings of the International IEEE Africon, 1-6. :1-6.
[17] Eski, I., Yildirim, S., 2009. Vibration control of vehicle active suspension system using a new robust neural network control system.
Simulation Modelling Practice and Theory, 17(5):778-793.
[18] Fateh, M.M., Alavi, S.S., 2009. Impedance control of an active suspension system.
Mechatronics, 19(1):134-140.
[19] Feng, J.Z., Li, J., Yu, F., 2003. GA-based PID and fuzzy logic control for active vehicle suspension system.
International Journal of Automotive Technology, 4(4):181-191.
[20] Fialho, I., Balas, G.J., 2002. Road adaptive active suspension using linear parameter-varying gain-scheduling.
IEEE Transactions on Control Systems Technology, 10(1):43-54.
[21] Fischer, D., Isermann, R., 2004. Mechatronic semi-active and active vehicle suspensions.
Control Engineering Practice, 12(11):1353-1367.
[22] Gao, H., Lam, J., Wang, C., 2006. Multi-objective control of vehicle active suspension systems via load-dependent controllers.
Journal of Sound and Vibration, 290(3-5):654-675.
[23] Gao, Z., 2002. From linear to nonlinear control means: a practical progression.
ISA Transactions, 41(2):177-189.
[24] Griffin, M.J., 2007. Discomfort from feeling vehicle vibration.
Vehicle System Dynamics, 45(7-8):679-698.
[25] Guclu, R., 2003. Active control of seat vibrations of a vehicle model using various suspension alternatives.
Turkish Journal of Engineering and Environmental Sciences, 27(6):361-373.
[26] Guglielmino, E., Edge, K.A., 2004. A controlled friction damper for vehicle applications.
Control Engineering Practice, 12(4):431-443.
[27] Guo, B., Liu, H., Luo, Z., 2009. Adaptive PID Controller Based on BP Neural Network.
, Proceedings of the International Conference on Artificial Intelligence, 148-150. :148-150.
[28] Hanafi, D., 2010. PID Controller Design for Semi-active Car Suspension based on Model from Intelligent System Identification.
, Proceedings of the 2nd International Conference on Computer Engineering and Applications, 60-63. :60-63.
[29] Hassanzadeh, I., Alizadeh, G., Shirjoposht, N.P., Hashemzadeh, F., 2010. A new optimal nonlinear approach to half car active suspension.
IACSIT International Journal of Engineering and Technology, 2(1):78-84.
[30] Hrovat, D., 1997. Survey of advanced suspension developments and related optimal control applications.
Automatica, 33(10):1781-1817.
[31] Huang, C.J., Lin, J.S., Chen, C.C., 2010. Road adaptive algorithm design of half-car active suspension system.
Expert Systems with Applications, 37(6):4392-4402.
[32] Ji, X.D., Wan, K.J., Hai, N.Y., 2007. Time Delay Force Control for Vehicle Active Suspension System.
, Proceedings of the 26th Chinese Controls Conference, 640-645. :640-645.
[33] Ji, X.J., Li, S.J., 2009. Design of the Fuzzy-PID Controller for New Vehicle Active Suspension with Electro-Hydrostatic Actuator.
, Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, 60-63. :60-63.
[34] Kumar, M.S., 2008. Development of an Active Suspension System for Automobiles using PID Controller.
, Proceedings on the World Congress on Engineering, 1472-1477. :1472-1477.
[35] Marusak, P.M., Kuntanapreeda, S., 2011. Constrained model predictive force control of an electrohydraulic actuator.
Control Engineering Practice, 19(1):62-73.
[36] ODwyer, A., 2006. Handbook of PI an PID Controller Tuning Rules. Imperial College Press,London :
[37] Pedro, J.O., 2007.
H
2-LQG/LTR controller design for active suspension systems.
R and D Journal of the South African Institution of Mechanical Engineering, 23(2):32-41.
[38] Pedro, J.O., Dahunsi, O., 2011. Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system.
International Journal of Applied Mathematics and Computer Science, 21(1):137-147.
[39] Priyandoko, G., Mailah, M., Jamaluddin, H., 2009. Vehicle suspension system using skyhook adaptive neuro active force control.
Mechanical Systems and Signal Processing, 23(3):855-868.
[40] Renn, J., Wu, T., 2007. Modelling and control of a new 1/4
t servo-hydraulic vehicle active suspension system.
Journal of Marine Science and Technology, 15(3):265-272.
[41] Ryu, S., Kim, Y., Park, Y., 2008. Robust
H
∞ preview control of an active suspension system with norm-bounded uncertainties.
International Journal of Automotive Technology, 9:585-592.
[42] Sam, Y.M., Hudha, K., 2006. Modelling and Force Tracking of Hydraulic Actuator for an Active Suspension System.
, Proceedings of the IEEE Conference on Industrial Electronics and Applications, 1-6. :1-6.
[43] Sammier, D., Sename, O., Dugard, L., 2003. Skyhook and H
∞ control of semi-active suspensions: some practical aspects.
Vehicle System Dynamics, 39(4):279-308.
[44] Savaresi, S.M., Poussot-Vassal, C., Spelta, C., 2010. Semi-active Suspension Control Design for Vehicles. Butterworth-Heinemann,Boston :
[45] Szaszi, I., Gaspar, P., Bokor, J., 2002. Nonlinear Active Suspension Modelling using Linear Parameter Varying Approach.
, Proceedings of the 10th Mediterranean Conference on Control and Automation, 1-10. :1-10.
[46] The MathWorks, Inc., 2001. Signal Processing Toolbox for Use with Matlab® User’s Guide Version 5.1.
, :
[47] Weber, P.A., Braaksma, J.P., 2000. Towards a North American geometric design standard for speed humps.
ITE Journal, 70(1):30-34.
[48] Williams, R.A., 1997. Automotive active suspensions Part 2: Practical considerations.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 211(6):427-444.
[49] Yagiz, N., Hacioglu, Y., 2008. Backstepping control of a vehicle with active suspensions.
Control Engineering Practice, 16(12):1457-1467.
[50] Yoshimura, T., Kume, A., Kurimoto, M., Hino, J., 2001. Construction of an active suspension system of a quarter car model using the concept of sliding mode control.
Journal of Sound and Vibration, 239(2):187-199.
[51] Zhao, Q., Yin, J., Li, D., 2011. Intelligent Compound Control of Vehicle Active Suspension based on RBF Neural Network.
Proceedings of the 3rd International Conference on Measuring Technology and Mechatronics Automation, 2:441-444.
[52] Zuo, L., Nayfeh, S.A., 2003. Low order continuous-time filters for approximation of the ISO 2631-1 human vibration sensitivity weightings.
Journal of Sound and Vibration, 265(2):459-465.
Open peer comments: Debate/Discuss/Question/Opinion
<1>