Full Text:   <2091>

CLC number: TU352.1

On-line Access: 2013-01-02

Received: 2012-07-13

Revision Accepted: 2012-12-10

Crosschecked: 2012-12-18

Cited: 4

Clicked: 4274

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.47-60


Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures*

Author(s):  Xiao Huang1,2, Hong-ping Zhu1,2

Affiliation(s):  1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China; more

Corresponding email(s):   hpzhu@mail.hust.edu.cn

Key Words:  Adjacent shear-type structures, Viscoelastic damper (VED), Optimal arrangement, Seismic response

Xiao Huang, Hong-ping Zhu. Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures[J]. Journal of Zhejiang University Science A, 2013, 14(1): 47-60.

@article{title="Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures",
author="Xiao Huang, Hong-ping Zhu",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures
%A Xiao Huang
%A Hong-ping Zhu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 47-60
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200181

T1 - Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures
A1 - Xiao Huang
A1 - Hong-ping Zhu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 47
EP - 60
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200181

The optimal arrangement of viscoelastic dampers (VEDs) used to link two adjacent shear-type structures under seismic excitation was investigated. A two-step optimal design method is proposed. First, optimal parameter expressions of the Kelvin model are used to calculate the optimal stiffness and damping coefficient of the VEDs. Then, using the two-step optimal design method, taking the quadratic performance index as the optimization objective, the optimal arrangement of the dampers is determined. General rules about the optimal arrangement of the VEDs were obtained. The results show that the placement of only one damper between two adjacent shear-type structures should be avoided; if more than one damper is used, they should be distributed on the top and lower floors of the structures. Optimization of the number of dampers had little effect on response reduction. The most important factor was the optimization of the placement of the dampers. Through comparative study, for buildings of equal and unequal heights, the optimal parameters of dampers from parametric studies were shown to match the theoretical results for different numbers and placements of dampers. The level of response reduction was shown to be sensitive to the damping coefficient of the dampers.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Abdullah, M.M., Hanif, J.H., Richardson, A., Sobanjo, J., 2001. Use of a shared tuned mass damper (STMD) to reduce vibration and pounding in adjacent structures. Earthquake Engineering and Structural Dynamics, 30(8):1185-1201. 

[2] Basili, M., De Angelis, M., 2007. Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices. Journal of Sound and Vibration, 301(1-2):106-125. 

[3] Bharti, S.D., Dumne, S.M., Shrimali, M.K., 2010. Seismic response analysis of adjacent buildings connected with MR dampers. Engineering Structures, 32(8):2122-2133. 

[4] Bhaskararao, A.V., Jangid, R.S., 2006. Seismic response of adjacent buildings connected with friction dampers. Bulletin of Earthquake Engineering, 4(1):43-64. 

[5] Bhaskararao, A.V., Jangid, R.S., 2006. Seismic analysis of structures connected with friction dampers. Engineering Structures, 28(5):690-703. 

[6] Bhaskararao, A.V., Jangid, R.S., 2006. Harmonic response of adjacent structures connected with a friction damper. Journal of Sound and Vibration, 292(3-5):710-725. 

[7] Clough, R., Penzien, J., 2004.  Dynamics of Structures (2rd Edition). Computers and Structures, Inc,Berkeley, California, USA :

[8] Ge, D.D., Zhu, H.P., Wang, D.S., Huang, M.S., 2010. Seismic response analysis of damper-connected adjacent structures with stochastic parameters. Journal of Zhejiang University SCIENCE A (Applied Physics & Engineering), 11(6):402-414. 

[9] Kasai, K., Maison, B.F., 1997. Building pounding damage during the 1989 Loma Prieta earthquake. Engineering Structures, 19(3):195-207. 

[10] Kim, J., Ryu, J., Chung, L., 2006. Seismic performance of structures connecting by viscoelastic dampers. Engineering Structures, 28(2):183-195. 

[11] Lavan, O., Levy, R., 2006. Optimal peripheral drift control of 3D irregular framed structures using supplemental viscous dampers. Journal of Earthquake Engineering, 10(6):903-923. 

[12] Ok, S.Y., Song, J., Park, K.S., 2008. Optimal design of hysteretic dampers connecting adjacent structures using multi-objective genetic algorithm and stochastic linearization method. Engineering Structures, 30(5):1240-1249. 

[13] Patel, C.C., Jangid, R.S., 2011. Dynamic response of adjacent structures connected by friction damper. Earthquake and Structures, 2(2):149-169. 

[14] Roh, H., Cimellaro, G.P., Garcia, D.L., 2011. Seismic response of adjacent steel structures connected by passive device. Advances in Structural Engineering, 14(3):499-517. 

[15] Silvestri, S., Trombetti, T., 2007. Physical and numerical approaches for the optimal insertion of seismic viscous dampers in shear-type structures. Journal of Earthquake Engineering, 11(5):787-828. 

[16] Singh, M.P., Moreschi, L.M., 2002. Optimal placement of dampers for passive response control. Earthquake Engineering and Structural Dynamics, 31(4):955-976. 

[17] Takewaki, I., 2007. Earthquake input energy to two buildings connected by viscous dampers. Journal of Structural Engineering, 133(5):620-628. 

[18] Trombetti, T., Silvestri, S., 2006. On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems. Journal of Sound and Vibration, 292(1-2):21-58. 

[19] Trombetti, T., Silvestri, S., 2007. Novel schemes for inserting seismic dampers in shear-type systems based upon the mass proportional component of the Rayleigh damping matrix. Journal of Sound and Vibration, 302(3):486-526. 

[20] Xu, Y.L., He, Q., Ko, J.M., 1999. Dynamic response of damper-connected adjacent buildings under earthquake excitation. Engineering Structures, 21(2):135-148. 

[21] Zhu, H.P., Iemura, H., 2000. A study of response control on the passive coupling element between two parallel structures. International Journal of Structural Engineering and Mechanics, 9(4):383-396. 

[22] Zhu, H.P., Ge, D.D., Huang, X., 2011. Optimum connecting dampers to reduce the seismic responses of parallel structures. Journal of Sound and Vibration, 330(9):1931-1949. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE