Full Text:   <4411>

CLC number: TH49

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-05-16

Cited: 4

Clicked: 6804

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.6 P.393-400

http://doi.org/10.1631/jzus.A1200297


Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment


Author(s):  Chuan-xiang Zheng, Liang Wang, Rong Li, Zong-xin Wei, Wei-wei Zhou

Affiliation(s):  . Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   wangliangtcdri@126.com

Key Words:  Hydrogen storage vessel, Composite, Fatigue test, High pressure, Temperature raise


Chuan-xiang Zheng, Liang Wang, Rong Li, Zong-xin Wei, Wei-wei Zhou. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment[J]. Journal of Zhejiang University Science A, 2013, 14(6): 393-400.

@article{title="Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment",
author="Chuan-xiang Zheng, Liang Wang, Rong Li, Zong-xin Wei, Wei-wei Zhou",
journal="Journal of Zhejiang University Science A",
volume="14",
number="6",
pages="393-400",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200297"
}

%0 Journal Article
%T Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment
%A Chuan-xiang Zheng
%A Liang Wang
%A Rong Li
%A Zong-xin Wei
%A Wei-wei Zhou
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 6
%P 393-400
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200297

TY - JOUR
T1 - Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment
A1 - Chuan-xiang Zheng
A1 - Liang Wang
A1 - Rong Li
A1 - Zong-xin Wei
A1 - Wei-wei Zhou
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 6
SP - 393
EP - 400
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200297


Abstract: 
A significant temperature raise within hydrogen vehicle cylinder during the fast filling process will be observed, while the strength and fatigue life of the cylinder will dramatically decrease at high temperature. In order to evaluate the strength and fatigue of composite hydrogen storage vessel, a 70-MPa fatigue test system using hydrogen medium was set up. Experimental study on the fatigue of composite hydrogen storage vessels under real hydrogen environment was performed. The experimental results show that the ultimate strength and fatigue life both decreased obviously compared with the values under hydraulic fatigue test. Furthermore, fatigue property, failure behavior, and safe hydrogen charging/discharging working mode of onboard hydrogen storage vessels were obtained through the fatigue tests.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Akansu, S., Dulger, Z., Kahraman, N., Veziroglu, T., 2004. Internal combustion engines fueled by natural gas-hydrogen mixtures. International Journal of Hydrogen Energy, 29(14):1527-1539. 


[2] An, G., 2009. Numerical analysis of fast-filling process of hydrogen storage cylinder for vehicles. Missiles and Space Vehicles, (in Chinese),3:50-55. 

[3] Ansari, R., Alisafaei, F., Ghaedi, P., 2010. Dynamic analysis of multi-layered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature. Composite Structures, 92(5):1100-1109. 


[4] Bechel, V.T., Fredin, M.B., Donaldson, S.L., 2002. Combined Cryogenic and Elevated Temperature Cycling of Carbon/Polymer Composites. , Proceedings of 47th SAMPLE International Symposium, Long Beach, CA, 808-819. :808-819. 

[5] Camara, S., Bunsell, A.R., Thionnet, A., Allen, D.H., 2011. Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hydrogen storage. International Journal of Hydrogen Energy, 36(10):6031-6038. 


[6] Comond, O., Perreux, D., Thiebaud, F., Weber, M., 2009. Methodology to improve the lifetime of type III HP tank with a steel liner. International Journal of Hydrogen Energy, 34(7):3077-3090. 


[7] Galassi, M.C., Baralidi, D., Iborra, B.A., Moretto, P., 2012. CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks. International Journal of Hydrogen Energy, 37(8):6886-6892. 


[8] Gentilleau, B., Bertin, M., Touchard, F., Grandidier, J.C., 2011. Stress analysis in specimens made of multi-layer polymer/composite used for hydrogen storage application: Comparison with experimental results. Composite Structures, 93(11):2760-2766. 


[9] Henaff-Gardin, G., Lafarie, M.C., 2002. Specificity of matrix cracking development in CFRP laminates under stress and thermal cycling. International Journal of Fatigue, 24(2-4):171-177. 


[10] Hosseini, M., Dincer, I., Naterer, G.F., Rosen, M.A., 2012. Thermodynamic analysis of filling compressed gaseous hydrogen storage tanks. International Journal of Hydrogen Energy, 37(6):5063-5071. 


[11] Liu, Y.L., Zhao, Y.Z., Zhao, L., 2010. Experiment studies on temperature rise within a hydrogen cylinder during refueling. International Journal of Hydrogen Energy, 35(7):2627-2632. 


[12] Mallick, K., Tupper, M., Arritt, B., 2003. Thermal-micromechanics of Microcracking in a Cryogenic Pressure Vessel. , Proceedings of 44th AAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, 1765:1765

[13] Monde, M., Woodfield, P., Takano, T., Kosaka, M., 2012. Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressures of 35 and 70 MPa. International Journal of Hydrogen Energy, 37(7):5723-5734. 


[14] Mori, D., Hirose, K., 2009. Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy, 34(10):4569-4574. 


[15] Onder, A., Sayman, O., Dogan, T., Tarakcioglu, N., 2009. Burst failure load of composite pressure vessels. Composite Structures, 89(1):159-166. 


[16] Ross, D.K., 2006. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80(10):1084-1089. 


[17] Sayman, O., 2005. Analysis of multi-layered composite cylinders under hydrothermal loading. Composites Part A: Applied Science and Manufacturing, 36(7):923-933. 


[18] Song, L., Jia, X.L., Sun, H.J., Sun, H.W., Hui, D., Yang, X.P., 2012. Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling. Composites Part B: Engineering, 46:227-233. 

[19] Tomioka, J.I., Kiguchi, K., Tamura, Y., Mitsuishi, H., 2011. Influence of temperature on the fatigue strength of compressed-hydrogen tanks for vehicles. International Journal of Hydrogen Energy, 36(3):2513-2519. 


[20] Utgikar, V.P., Thiesen, T., 2005. Safety of compressed hydrogen fuel tanks: leakage from stationary vehicles. Technology in Society, 27(3):315-320. 


[21] Zheng, C.X., Yang, F., 2008. Fatigue Test System of Hydrogen Storage Vessel. , (in Chinese),:

[22] Zheng, J.Y., Liu, X.X., Liu, P.F., Zhao, Y.Z., Yang, J., 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1):1048-1057. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE