Full Text:   <3292>

CLC number: TK91; TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-07-10

Cited: 0

Clicked: 7847

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.8 P.565-573

http://doi.org/10.1631/jzus.A1300114


Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia*


Author(s):  Hue-yee Chong, Mahidzal Dahari, Hwa-jen Yap, Ying-tai Loong

Affiliation(s):  . Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia

Corresponding email(s):   chonghy@um.edu.my

Key Words:  Risk criteria, Risk prioritization, Hydrogen refueling facility, Fuzzy logic


Hue-yee Chong, Mahidzal Dahari, Hwa-jen Yap, Ying-tai Loong. Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia[J]. Journal of Zhejiang University Science A, 2013, 14(8): 565-573.

@article{title="Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia",
author="Hue-yee Chong, Mahidzal Dahari, Hwa-jen Yap, Ying-tai Loong",
journal="Journal of Zhejiang University Science A",
volume="14",
number="8",
pages="565-573",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300114"
}

%0 Journal Article
%T Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia
%A Hue-yee Chong
%A Mahidzal Dahari
%A Hwa-jen Yap
%A Ying-tai Loong
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 8
%P 565-573
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300114

TY - JOUR
T1 - Fuzzy-based risk prioritization for a hydrogen refueling facility in Malaysia
A1 - Hue-yee Chong
A1 - Mahidzal Dahari
A1 - Hwa-jen Yap
A1 - Ying-tai Loong
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 8
SP - 565
EP - 573
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300114


Abstract: 
Hydrogen is starting to be mentioned as an alternative fuel to replace the fossil fuel in future transportation applications due to its characteristics of zero greenhouse gas emission and high energy efficiency. Before hydrogen fuel and its facilities can be introduced to the public, relevant safety issues and its hazards must be assessed in order to avoid any chance of injury or loss. While a traditional risk assessment has difficulty in prioritizing the risk of failure modes, this paper proposes a new fuzzy-based risk evaluation technique which uses fuzzy value to prioritize the risk of various scenarios. In this study, the final risk of each failure modes was prioritized by using the MATLAB fuzzy logic tool box with a combination of two assessments. The first assessment was concerned with the criteria which affected the actual probability of occurrence. This assessment considered the availability of the standard that was applied to prevent the likelihood of the scenario occurring. On the other hand, the second assessment was focused on evaluating the consequence of the failure by taking into account the availability of detection and the complexity of the failure rather than only the severity of the scenarios. A total of 87 failure scenarios were identified using failure modes and effect analysis (FMEA) procedures on hydrogen refueling station models. Fuzzy-based assessments were performed through risk prioritizing various failure scenarios with a fuzzy value (0 to 1) and risk level (low, medium, and high) while a traditional risk assessment approach presented the risks only in forms of level (low, medium, and/or high). Availability of the fuzzy value enabled further prioritizing on the risk results that fell in the same level of risk. This study concluded that fuzzy-based risk evaluation is able to further prioritize the decisions when compared with a traditional risk assessment method.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] ASME Group, 2010. ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers (ASME),:

[2] Bonvicini, S., Leonelli, P., Spadoni, G., 1998. Risk analysis of hazardous materials transportation. Journal of Hazardous Materials, 62:59-74. 

[3] Casal, J., 2007. Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants, Elsevier Science,:

[4] Darbra, R.M., Demichela, M., Mur, S., 2008. Preliminary risk assessment of ecotoxic substances accidental releases in major risk installations through fuzzy logic. Process Safety and Environmental Protection, 86(2):103-111. 


[5] Denson, W., Chandler, G., Crowell, W., 1991. Non-electronic Parts Reliability Data. , Available from http://www.dtic.mil/dtic/tr/fulltext/u2/a242083.pdf,[Accessed on Aug. 15, 2012],:

[6] Dekker, S., Cilliers, P., Hofmeyr, J.H., 2011. The complexity of failure: Implications of complexity theory for safety investigations. Safety Science, 49(6):939-945. 


[7] EERE Group, 2011. Current Technology of Hydrogen Storage. , Available from http://www1.eere.energy.gov/hydrogen andfuelcells/storage/current_technology.html,[Accessed on June 10, 2012],:

[8] EIGA Group, 2006. IGC Doc 15/06/e Gaseous Hydrogen Stations, European Industrial Gases Association (EIGA),:

[9] ETSI Group, 2012. What Are Standards?. , Available from http://www.etsi.org/standards/what-are-standards,[Accessed on June 21, 2012],:

[10] Gell-Mann, M., 1995. What is complexity. Complexity, 1(1):16-19. 

[11] Golmohammadi, R., Eshaghi, M., Khoram, M.R., 2011. Fuzzy logic method for assessment of noise. International Journal of Occupational Hygiene, 3(2):49-55. 

[12] Guimarães, A.C.F., Lapa, C.M.F., 2007. Fuzzy inference to risk assessment on nuclear engineering systems. Applied Soft Computing, 7(1):17-28. 


[13] HIRD Group, 2012. H2 Incident Reporting and Lessons Learned. , Available from http://www.h2incidents.org/,[Accessed on Aug. 5, 2012],:

[14] Huang, C., 1996. Fuzzy risk assessment of urban natural hazards. Fuzzy Sets and Systems, 83(2):271-282. 

[15] ISO, 2009. ISO 31000 Translated into Plain English, International Organization for Standardization (ISO),:

[16] Kikukawa, S., Yamaga, F., Mitsuhashi, H., 2008. Risk assessment of hydrogen fueling stations for 70 MPa FCVs. International Journal of Hydrogen Energy, 33(23):7129-7136. 


[17] Kikukawa, S., Mitsuhashi, H., Miyake, A., 2009. Risk assessment for liquid hydrogen fueling stations. International Journal of Hydrogen Energy, 34(2):1135-1141. 


[18] Lachance, J., 2009. Risk-informed separation distances for hydrogen refueling stations. International Journal of Hydrogen Energy, 34(14):5838-5845. 


[19] Markowski, A.S., Mannan, M.S., Bigoszewska, A., 2009. Fuzzy logic for process safety analysis. Journal of Loss Prevention in the Process Industries, 22(6):695-702. 


[20] Markowski, A.S., Mannan, M.S., Kotynia, A., Pawlak, H., 2011. Application of fuzzy logic to explosion risk assessment. Journal of Loss Prevention in the Process Industries, 24(6):780-790. 


[21] NFPA Group, 2010. NFPA 52 Vehicular Gaseous Fuel Systems Code, National Fire Protection Association (NFPA),:

[22] Ni, M., Leung, M.K.H., Sumathy, K., Leung, D.Y.C., 2006. Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy, 31(10):1401-1412. 


[23] Norsk Hydro ASA, 2003. Risk Acceptance Criteria for Hydrogen Refuelling Stations. , Available from http://www.eihp.org/public/documents/acceptance_criteria_for_H2-refuelling_stations_FEB2003.pdf,[Accessed on May 17, 2012],:

[24] OSHA Group, 2008.  Guidelines for Hazard Identification, Risk Assessment and Risk Control (HIRARC). Technical Report Department of Occupational Safety and Health (OSHA), Ministry of Human Resources,Malaysia :

[25] Scipioni, A., Saccarola, G., Centazzo, A., Arena, F., 2002. FMEA methodology design, implementation and integration with HACCP system in a food company. Food Control, 13:495-501. 

[26] SINTEF, 2009. Offshore Reliability Data (OREDA), Volume 1-Topside Equipment. OREDA Participant, Available from: http://www.sintef.no/oredahandbook,:

[27] Stamatis, D.H., 2003.  Failure Mode and Effects Analysis: FMEA from Theory to Execution. ASQ Quality Press,USA :

[28] Yen, J., Langari, R., 1999.  Fuzzy Logic: Intelligence, Control, and Information. Pearson Education,USA :


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE