Full Text:   <3877>

CLC number: TG146.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-01-14

Cited: 3

Clicked: 6864

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.2 P.149-156

http://doi.org/10.1631/jzus.A1300164


Microstructure and hardness of Cu-12% Fe composite at different drawing strains*


Author(s):  Xiao-pei Lu1, Da-wei Yao1, Yi Chen1, Li-tian Wang2, An-ping Dong2, Liang Meng1, Jia-bin Liu1,3

Affiliation(s):  1. Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   liujiabin@zju.edu.cn

Key Words:  Cu-12% Fe alloys, Drawing, Microstructure, Hardness


Share this article to: More <<< Previous Article|

Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu. Microstructure and hardness of Cu-12% Fe composite at different drawing strains[J]. Journal of Zhejiang University Science A, 2014, 15(2): 149-156.

@article{title="Microstructure and hardness of Cu-12% Fe composite at different drawing strains",
author="Xiao-pei Lu, Da-wei Yao, Yi Chen, Li-tian Wang, An-ping Dong, Liang Meng, Jia-bin Liu",
journal="Journal of Zhejiang University Science A",
volume="15",
number="2",
pages="149-156",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300164"
}

%0 Journal Article
%T Microstructure and hardness of Cu-12% Fe composite at different drawing strains
%A Xiao-pei Lu
%A Da-wei Yao
%A Yi Chen
%A Li-tian Wang
%A An-ping Dong
%A Liang Meng
%A Jia-bin Liu
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 2
%P 149-156
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300164

TY - JOUR
T1 - Microstructure and hardness of Cu-12% Fe composite at different drawing strains
A1 - Xiao-pei Lu
A1 - Da-wei Yao
A1 - Yi Chen
A1 - Li-tian Wang
A1 - An-ping Dong
A1 - Liang Meng
A1 - Jia-bin Liu
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 2
SP - 149
EP - 156
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300164


Abstract: 
Cu-12% Fe (in weight) composite was prepared by casting, pretreating, and cold drawing. The microstructure was observed and Vickers hardness was measured for the composite at various drawing strains. Cu and Fe grains could evolve into aligned filaments during the drawing process. X-ray diffraction (XRD) was used to analyze the orientation evolution during the drawing process. The axial direction of the filamentary structure has different preferred orientations from the radial directions. The strain of Fe grains linearly increases with an increase in the drawing strain up to 6.0, and deviates from the linear relation when the drawing strain is higher than 6.0. With an increase in the drawing strain, the microstructure scales of Fe filaments exponentially decrease. The density of the interface between Cu and Fe phases exponentially increases with an increase in the aspect ratio of Fe filaments. There is a similar Hall-Petch relationship between the hardness and Fe filament spacing. The refined microstructure from drawing deformation at drawing strains lower than 3.0 can induce a more significant hardening effect than that at drawing strains higher than 3.0.

Cu-12% Fe合金在不同变形量下的组织和硬度特性

研究目的:阐明铜铁合金在拉拔变形过程中,微观组织和硬度的变化规律。
创新要点:1.考察铜铁合金变形过程中,铜基体和铁枝晶组织的变化特点;2.研究铁纤维的尺寸及Cu/Fe相界面密度与合金变形量的关系;3.探讨了铁纤维与硬度关系符合Hall-Petch关系的匹配程度。
研究方法:1.通过固溶时效处理使得铁枝晶均匀地分布在铜基体中;2.通过冷拉拔手段使得铜合金从棒状逐步变形成线材;3.使用扫描电镜观察微观组织,并使用维氏硬度仪测试样品硬度。
重要结论:1.铁枝晶在合金变形过程中逐渐变成铁纤维。随着冷变形进行,线材纵截面的铜纤维形成(110)择优取向,铁纤维形成(100)择优取向;在横截面上的铜纤维形成(111)择优取向,铁纤维形成(110)择优取向;2.铁纤维的厚度、宽度和间距随变形量的增加呈指数降低,Cu/Fe相界面密度随铁纤维宽厚比的增加而呈指数增加。在变形量小于6.0时,铁相的应变随变形量线性增加,当变形量大于6.0时,铁相的应变偏离这种关系;3.铁纤维的间距和合金硬度存在Hall-Petch关系。当变形量小于3.0时,纤维组织细化对硬度带来的影响较为明显。

关键词:Cu-12% Fe合金;拉拔;纤维组织;硬度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Biselli, C., Morris, D.G., 1994. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders. Acta Metallurgica et Materialia, 42(1):163-176. 


[2] Biselli, C., Morris, D.G., 1996. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Materialia, 44(2):493-504. 


[3] Brokmeier, H.G., Bolmaro, R.E., Signorelli, J.A., 2000. Texture development of wire drawn Cu–Fe composites. Physica B: Condensed Matter, 276-278:888-889. 


[4] Cairns, J.H., Clough, J., Dewey, M.A.P., Nutting, J., 1971. The structure and mechanical properties of heavily deformed copper. Journal of the Institute of Metals, 99:93-97. 

[5] Funkenbusch, P.D., Courtney, T.H., 1981. Microstructural strengthening in cold worked in situ Cu-14.8 Vol.% Fe composites. Scripta Metallurgica, 15(12):1349-1354. 


[6] Funkenbusch, P.D., Courtney, T.H., 1985. On the strength of heavily cold worked in situ composites. Acta Metallurgica, 33(5):913-922. 


[7] Gao, H.Y., Wang, J., Shu, D., 2005. Effect of Ag on the microstructure and properties of Cu–Fe in situ composites. Scripta Materialia, 53(10):1105-1109. 


[8] Gao, H.Y., Wang, J., Shu, D., 2007. Microstructure and strength of Cu–Fe–Ag in situ composites. Materials Science and Engineering: A, 452-453:367-373. 


[9] Go, Y.S., Spitzig, W.A., 1991. Strengthening in deformation-processed Cu-20% Fe composites. Journal of Materials Science, 26(1):163-171. 


[10] Hao, S.J., Cui, L.S., Jiang, D.Q., 2013. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science, 339(6124):1191-1194. 


[11] He, L., Allard, L.F., Ma, E., 2000. Fe-Cu two-phase nanocomposites: application of a modified rule of mixtures. Scripta Materialia, 42(5):517-523. 


[12] Hong, S.I., Hill, M.A., 2001. Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process. Scripta Materialia, 44(10):2509-2515. 


[13] Jeong, E., Han, S., Goto, M., 2009. Effects of thermo-mechanical processing and trace amount of carbon addition on tensile properties of Cu–2.5Fe–0.1P alloys. Materials Science and Engineering: A, 520(1-2):66-74. 


[14] Jin, Y., Adachi, K., Takeuchi, T., 1997. Correlation between the electrical conductivity and aging treatment for a Cu-15 wt% Cr alloy composite formed in-situ. Materials Letters, 32(5-6):307-311. 


[15] Lotgering, F.K., 1959. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. Journal of Inorganic and Nuclear Chemistry, 9(2):113-123. 


[16] Morris, D.G., Muñoz-Morris, M.A., 2011. The effectiveness of equal channel angular pressing and rod rolling for refining microstructures and obtaining high strength in a Cu–Fe composite. Materials Science and Engineering: A, 528(19-20):6293-6302. 


[17] Qu, L., Wang, E.G., Zuo, X.W., 2011. Experiment and simulation on the thermal instability of a heavily deformed Cu–Fe composite. Materials Science and Engineering: A, 528(6):2532-2537. 


[18] Raabe, D., Ohsaki, S., Hono, K., 2009. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Materialia, 57(17):5254-5263. 


[19] Sauvage, X., Wetscher, F., Pareige, P., 2005. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Materialia, 53(7):2127-2135. 


[20] Spitzig, W.A., 1991. Strengthening in heavily deformation processed Cu-20%Nb. Acta Metallurgica et Materialia, 39(6):1085-1090. 


[21] Spitzig, W.A., Pelton, A.R., Laabs, F.C., 1987. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta Metallurgica, 35(10):2427-2442. 


[22] Stepanov, N.D., Kuznetsov, A.V., Salishchev, G.A., 2013. Evolution of microstructure and mechanical properties in Cu–14%Fe alloy during severe cold rolling. Materials Science and Engineering: A, 564:264-272. 


[23] Wu, Z.W., Chen, Y., Meng, L., 2009. Effects of rare earth elements on annealing characteristics of Cu-6 wt.% Fe composites. Journal of Alloys and Compounds, 477(1-2):198-204. 


[24] Wu, Z.W., Liu, J.J., Chen, Y., Meng, L., 2009. Microstructure, mechanical properties and electrical conductivity of Cu–12wt% Fe microcomposite annealed at different temperatures. Journal of Alloys and Compounds, 467(1-2):213-218. 


[25] Zheng, S.J., Beyerlein, I.J., Carpenter, J.S., 2013. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nature Communications, 4:1696



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE