Full Text:   <1425>

Summary:  <775>

CLC number: TV125

On-line Access: 2014-03-04

Received: 2013-08-13

Revision Accepted: 2014-01-03

Crosschecked: 2014-02-21

Cited: 2

Clicked: 3548

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.3 P.219-230


Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China*

Author(s):  Yue-ping Xu, Chong Ma, Su-li Pan, Qian Zhu, Qi-hua Ran

Affiliation(s):  . Institute of Hydrology and Water Resources, Civil Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   ranqihua@zju.edu.cn

Key Words:  Climate change, Change factor method (CFM), Multi-site weather generator, Qiantang River Basin

Share this article to: More <<< Previous Article|

Yue-ping Xu, Chong Ma, Su-li Pan, Qian Zhu, Qi-hua Ran. Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China[J]. Journal of Zhejiang University Science A, 2014, 15(3): 219-230.

@article{title="Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China",
author="Yue-ping Xu, Chong Ma, Su-li Pan, Qian Zhu, Qi-hua Ran",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China
%A Yue-ping Xu
%A Chong Ma
%A Su-li Pan
%A Qian Zhu
%A Qi-hua Ran
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 3
%P 219-230
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300267

T1 - Evaluation of a multi-site weather generator in simulating precipitation in the Qiantang River Basin, East China
A1 - Yue-ping Xu
A1 - Chong Ma
A1 - Su-li Pan
A1 - Qian Zhu
A1 - Qi-hua Ran
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 3
SP - 219
EP - 230
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300267

Recent years have seen a surge in assessment of potential impacts of climate change. As one of the most important tools for generating synthetic hydrological model inputs, weather generators have played an important role in climate change impact analysis of water management. However, most weather generators like statistical downscaling model (SDSM) and long Ashton research station weather generator (LARS-WG) are designed for single site data generation. Considering the significance of spatial correlations of hydro-meteorological data, multi-site weather data generation becomes a necessity. In this study we aim to evaluate the performance of a new multi-site stochastic model, geo-spatial temporal weather generator (GiST), in simulating precipitation in the qiantang River Basin, East China. The correlation matrix, precipitation amount and occurrence of observed and GiST-generated data are first compared for the evaluation process. Then we use the GiST model combined with the change factor method (CFM) to investigate future changes of precipitation (2071–2100) in the study area using one global climate model, Hadgem2_ES, and an extreme emission scenario RCP 8.5. The final results show that the simulated precipitation amount and occurrence by GiST matched their historical counterparts reasonably. The correlation coefficients between simulated and historical precipitations show good consistence as well. Compared with the baseline period (1961–1990), precipitation in the future time period (2071–2100) at high elevation stations will probably increase while at other stations decreases will occur. This study implies potential application of the GiST stochastic model in investigating the impact of climate change on hydrology and water resources.


研究目的:以空间相关系数、降雨量和降雨次数为指标,利用实测的气象数据,评估一个新的多站天气发生器GiST在中国东部钱塘江流域模拟降雨的性能。在此基础上,结合全球气候模式Hadgem2-ES,分析在浓度路径RCP 8.5下GiST模拟2071–2100年的降雨情况。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Anandhi, A., Frei, A., Pierson, D.C., 2011. Examination of change factor methodologies for climate change impact assessment. Water Resources Research, 47(3):W03501

[2] Baigorria, G.A., Jones, J.W., 2010. GiST: A stochastic model for generating spatially and temporally correlated daily rainfall data. Journal of Climate, 23(22):5990-6008. 

[3] Brissette, F.P., Khalili, M., Leconte, R., 2007. Efficient stochastic generation of multi-site synthetic precipitation data. Journal of Hydrology, 345(3-4):121-133. 

[4] Clark, M., Gangopadhyay, S., Hay, L., 2004. The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology, 5(1):243-262. 

[5] Fowler, H.J., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12):1547-1578. 

[6] Jones, C.D., Hughes, J.K., Bellouin, N., 2011. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4(3):543-570. 

[7] Ju, H., Lin, E.D., Wheeler, T., 2013. Climate change modelling and its roles to Chinese crops yield. Journal of Integrative Agriculture, 12(5):892-902. 

[8] Khalili, M., Leconte, R., Brissette, F., 2007. Stochastic multisite generation of daily precipitation data using spatial autocorrelation. Journal of hydrometeorology, 8(3):396-412. 

[9] Khan, M.S., Coulibaly, P., Dibike, Y., 2006. Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319(1-4):357-382. 

[10] Kilsby, C.G., Jones, P.D., Burton, A., 2007. A daily weather generator for use in climate change studies. Environmental Modeling & Software, 22(12):1705-1719. 

[11] Mehrotra, R., Srikanthan, R., Sharma, A., 2006. A comparison of three stochastic multi-site precipitation occurrence generators. Journal of Hydrology, 331(1-2):280-292. 

[12] Nicks, A.D., Gander, G.A., 1994. CLIGEN: A weather generator for climate inputs to water resource and other models. , Proceedings of Fifth International Conference on Computers in Agriculture, 903-909. :903-909. 

[13] Qian, B., Hayhoe, H., Gameda, S., 2005. Evaluation of the stochastic weather generators LARS-WG and AAFC-WG for climate change impact studies. Climate Research, 29:3-21. 

[14] Racsko, P., Szeidl, L., Semenov, M., 1991. A serial approach to local stochastic weather models. Ecological Modelling, 57(1-2):27-41. 

[15] Salvi, K., Kannan, S., Ghosh, S., 2013. High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. Journal of Geophysical Research: Atmospheres, 118(9):3557-3578. 

[16] Schoof, J.T., Pryor, S.C., 2001. Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21(7):773-790. 

[17] Semenov, M.A., Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35(4):397-414. 

[18] Teng, J., Jai, V., Chiew, F.H.S., 2012. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology, 13(1):122-139. 

[19] Thyer, M., Kuczera, G., 2003. A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis. Journal of Hydrology, 275(1):27-48. 

[20] Wang, G.Q., Zhang, J.Y., Jin, J.L., 2012. Assessing water resources in China using PRECIS projections and a VIC model. Hydrology and Earth System Sciences, 16(1):231-240. 

[21] Wilby, R.L., Wigley, T.M.L., 1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography, 21(1-4):530-548. 

[22] Wilby, R.L., Harris, I., 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research, 42(2):W02419

[23] Wilby, R.L., Dawson, C.W., 2013. The statistical downscaling model: insights from one decade of application. International Journal of Climatology, 33(7):1707-1719. 

[24] Wilks, D.S., 1998. Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210(1):178-191. 

[25] Xu, Y.P., Zhang, X.J., Tian, Y., 2012. Impact of climate change on 24-h design rainfall depth estimation in Qiantang River Basin, East China. Hydrological Processes, 26(26):4067-4077. 

[26] Xu, Y.P., Zhang, X.J., Ran, Q.H., 2013. Impact of climate change on hydrology of upper reaches of Qiangtang River Basin, East China. Journal of Hydrology, 483:51-60. 

[27] Zhai, P., Zhang, X., Wan, H., 2005. Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate, 18(7):1096-1108. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE