CLC number: TU452
On-line Access: 2014-04-03
Received: 2013-07-09
Revision Accepted: 2014-01-05
Crosschecked: 2014-03-17
Cited: 2
Clicked: 8158
Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University Science A, 2014, 15(4): 282-290.
@article{title="Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation",
author="Zeng-hui Zhao, Wei-ming Wang, Xin Gao",
journal="Journal of Zhejiang University Science A",
volume="15",
number="4",
pages="282-290",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300314"
}
%0 Journal Article
%T Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation
%A Zeng-hui Zhao
%A Wei-ming Wang
%A Xin Gao
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 4
%P 282-290
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300314
TY - JOUR
T1 - Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation
A1 - Zeng-hui Zhao
A1 - Wei-ming Wang
A1 - Xin Gao
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 4
SP - 282
EP - 290
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300314
Abstract: To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient ω and a softening modulus coefficient α were introduced to take into account the stiffness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Mohr-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model’s accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength parameters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confining pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.
Open peer comments: Debate/Discuss/Question/Opinion
<1>